2018-12-06 14:17:51 +00:00
|
|
|
/* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
2017-04-21 10:43:26 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
#include "rte_approx.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Based on paper "Approximating Rational Numbers by Fractions" by Michal
|
|
|
|
* Forisek forisek@dcs.fmph.uniba.sk
|
|
|
|
*
|
|
|
|
* Given a rational number alpha with 0 < alpha < 1 and a precision d, the goal
|
|
|
|
* is to find positive integers p, q such that alpha - d < p/q < alpha + d, and
|
|
|
|
* q is minimal.
|
|
|
|
*
|
|
|
|
* http://people.ksp.sk/~misof/publications/2007approx.pdf
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* fraction comparison: compare (a/b) and (c/d) */
|
|
|
|
static inline uint32_t
|
|
|
|
less(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
|
|
|
|
{
|
|
|
|
return a*d < b*c;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t
|
|
|
|
less_or_equal(uint32_t a, uint32_t b, uint32_t c, uint32_t d)
|
|
|
|
{
|
|
|
|
return a*d <= b*c;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* check whether a/b is a valid approximation */
|
|
|
|
static inline uint32_t
|
|
|
|
matches(uint32_t a, uint32_t b,
|
|
|
|
uint32_t alpha_num, uint32_t d_num, uint32_t denum)
|
|
|
|
{
|
|
|
|
if (less_or_equal(a, b, alpha_num - d_num, denum))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (less(a ,b, alpha_num + d_num, denum))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
find_exact_solution_left(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
|
|
|
|
uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
|
|
|
|
{
|
|
|
|
uint32_t k_num = denum * p_b - (alpha_num + d_num) * q_b;
|
|
|
|
uint32_t k_denum = (alpha_num + d_num) * q_a - denum * p_a;
|
|
|
|
uint32_t k = (k_num / k_denum) + 1;
|
|
|
|
|
|
|
|
*p = p_b + k * p_a;
|
|
|
|
*q = q_b + k * q_a;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
find_exact_solution_right(uint32_t p_a, uint32_t q_a, uint32_t p_b, uint32_t q_b,
|
|
|
|
uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
|
|
|
|
{
|
|
|
|
uint32_t k_num = - denum * p_b + (alpha_num - d_num) * q_b;
|
|
|
|
uint32_t k_denum = - (alpha_num - d_num) * q_a + denum * p_a;
|
|
|
|
uint32_t k = (k_num / k_denum) + 1;
|
|
|
|
|
|
|
|
*p = p_b + k * p_a;
|
|
|
|
*q = q_b + k * q_a;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
find_best_rational_approximation(uint32_t alpha_num, uint32_t d_num, uint32_t denum, uint32_t *p, uint32_t *q)
|
|
|
|
{
|
|
|
|
uint32_t p_a, q_a, p_b, q_b;
|
|
|
|
|
|
|
|
/* check assumptions on the inputs */
|
|
|
|
if (!((0 < d_num) && (d_num < alpha_num) && (alpha_num < denum) && (d_num + alpha_num < denum))) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set initial bounds for the search */
|
|
|
|
p_a = 0;
|
|
|
|
q_a = 1;
|
|
|
|
p_b = 1;
|
|
|
|
q_b = 1;
|
|
|
|
|
|
|
|
while (1) {
|
|
|
|
uint32_t new_p_a, new_q_a, new_p_b, new_q_b;
|
|
|
|
uint32_t x_num, x_denum, x;
|
|
|
|
int aa, bb;
|
|
|
|
|
|
|
|
/* compute the number of steps to the left */
|
|
|
|
x_num = denum * p_b - alpha_num * q_b;
|
|
|
|
x_denum = - denum * p_a + alpha_num * q_a;
|
|
|
|
x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
|
|
|
|
|
|
|
|
/* check whether we have a valid approximation */
|
|
|
|
aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
|
|
|
|
bb = matches(p_b + (x-1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
|
|
|
|
if (aa || bb) {
|
|
|
|
find_exact_solution_left(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* update the interval */
|
|
|
|
new_p_a = p_b + (x - 1) * p_a ;
|
|
|
|
new_q_a = q_b + (x - 1) * q_a;
|
|
|
|
new_p_b = p_b + x * p_a ;
|
|
|
|
new_q_b = q_b + x * q_a;
|
|
|
|
|
|
|
|
p_a = new_p_a ;
|
|
|
|
q_a = new_q_a;
|
|
|
|
p_b = new_p_b ;
|
|
|
|
q_b = new_q_b;
|
|
|
|
|
|
|
|
/* compute the number of steps to the right */
|
|
|
|
x_num = alpha_num * q_b - denum * p_b;
|
|
|
|
x_denum = - alpha_num * q_a + denum * p_a;
|
|
|
|
x = (x_num + x_denum - 1) / x_denum; /* x = ceil(x_num / x_denum) */
|
|
|
|
|
|
|
|
/* check whether we have a valid approximation */
|
|
|
|
aa = matches(p_b + x * p_a, q_b + x * q_a, alpha_num, d_num, denum);
|
|
|
|
bb = matches(p_b + (x - 1) * p_a, q_b + (x - 1) * q_a, alpha_num, d_num, denum);
|
|
|
|
if (aa || bb) {
|
|
|
|
find_exact_solution_right(p_a, q_a, p_b, q_b, alpha_num, d_num, denum, p, q);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* update the interval */
|
|
|
|
new_p_a = p_b + (x - 1) * p_a;
|
|
|
|
new_q_a = q_b + (x - 1) * q_a;
|
|
|
|
new_p_b = p_b + x * p_a;
|
|
|
|
new_q_b = q_b + x * q_a;
|
|
|
|
|
|
|
|
p_a = new_p_a;
|
|
|
|
q_a = new_q_a;
|
|
|
|
p_b = new_p_b;
|
|
|
|
q_b = new_q_b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int rte_approx(double alpha, double d, uint32_t *p, uint32_t *q)
|
|
|
|
{
|
|
|
|
uint32_t alpha_num, d_num, denum;
|
|
|
|
|
|
|
|
/* Check input arguments */
|
|
|
|
if (!((0.0 < d) && (d < alpha) && (alpha < 1.0))) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((p == NULL) || (q == NULL)) {
|
|
|
|
return -2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute alpha_num, d_num and denum */
|
|
|
|
denum = 1;
|
|
|
|
while (d < 1) {
|
|
|
|
alpha *= 10;
|
|
|
|
d *= 10;
|
|
|
|
denum *= 10;
|
|
|
|
}
|
|
|
|
alpha_num = (uint32_t) alpha;
|
|
|
|
d_num = (uint32_t) d;
|
|
|
|
|
|
|
|
/* Perform approximation */
|
|
|
|
return find_best_rational_approximation(alpha_num, d_num, denum, p, q);
|
|
|
|
}
|