f-stack/dpdk/lib/librte_acl/acl_run_neon.h

262 lines
8.1 KiB
C
Raw Normal View History

2018-12-06 14:17:51 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015 Cavium, Inc
*/
2017-04-21 10:43:26 +00:00
#include "acl_run.h"
#include "acl_vect.h"
struct _neon_acl_const {
rte_xmm_t xmm_shuffle_input;
rte_xmm_t xmm_index_mask;
rte_xmm_t range_base;
} neon_acl_const __attribute__((aligned(RTE_CACHE_LINE_SIZE))) = {
{
.u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}
},
{
.u32 = {RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX}
},
{
.u32 = {0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c}
},
};
/*
* Resolve priority for multiple results (neon version).
* This consists comparing the priority of the current traversal with the
* running set of results for the packet.
* For each result, keep a running array of the result (rule number) and
* its priority for each category.
*/
static inline void
resolve_priority_neon(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
struct parms *parms,
const struct rte_acl_match_results *p,
uint32_t categories)
{
uint32_t x;
int32x4_t results, priority, results1, priority1;
uint32x4_t selector;
int32_t *saved_results, *saved_priority;
for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
saved_results = (int32_t *)(&parms[n].cmplt->results[x]);
saved_priority = (int32_t *)(&parms[n].cmplt->priority[x]);
/* get results and priorities for completed trie */
results = vld1q_s32(
(const int32_t *)&p[transition].results[x]);
priority = vld1q_s32(
(const int32_t *)&p[transition].priority[x]);
/* if this is not the first completed trie */
if (parms[n].cmplt->count != ctx->num_tries) {
/* get running best results and their priorities */
results1 = vld1q_s32(saved_results);
priority1 = vld1q_s32(saved_priority);
/* select results that are highest priority */
selector = vcgtq_s32(priority1, priority);
results = vbslq_s32(selector, results1, results);
priority = vbslq_s32(selector, priority1, priority);
}
/* save running best results and their priorities */
vst1q_s32(saved_results, results);
vst1q_s32(saved_priority, priority);
}
}
/*
* Check for any match in 4 transitions
*/
static __rte_always_inline uint32_t
2017-04-21 10:43:26 +00:00
check_any_match_x4(uint64_t val[])
{
return (val[0] | val[1] | val[2] | val[3]) & RTE_ACL_NODE_MATCH;
}
static __rte_always_inline void
2017-04-21 10:43:26 +00:00
acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
struct acl_flow_data *flows, uint64_t transitions[])
{
while (check_any_match_x4(transitions)) {
transitions[0] = acl_match_check(transitions[0], slot, ctx,
parms, flows, resolve_priority_neon);
transitions[1] = acl_match_check(transitions[1], slot + 1, ctx,
parms, flows, resolve_priority_neon);
transitions[2] = acl_match_check(transitions[2], slot + 2, ctx,
parms, flows, resolve_priority_neon);
transitions[3] = acl_match_check(transitions[3], slot + 3, ctx,
parms, flows, resolve_priority_neon);
}
}
/*
* Process 4 transitions (in 2 NEON Q registers) in parallel
*/
static __rte_always_inline int32x4_t
2017-04-21 10:43:26 +00:00
transition4(int32x4_t next_input, const uint64_t *trans, uint64_t transitions[])
{
int32x4x2_t tr_hi_lo;
int32x4_t t, in, r;
uint32x4_t index_msk, node_type, addr;
uint32x4_t dfa_msk, mask, quad_ofs, dfa_ofs;
/* Move low 32 into tr_hi_lo.val[0] and high 32 into tr_hi_lo.val[1] */
tr_hi_lo = vld2q_s32((const int32_t *)transitions);
/* Calculate the address (array index) for all 4 transitions. */
index_msk = vld1q_u32((const uint32_t *)&neon_acl_const.xmm_index_mask);
/* Calc node type and node addr */
node_type = vbicq_s32(tr_hi_lo.val[0], index_msk);
addr = vandq_s32(tr_hi_lo.val[0], index_msk);
/* t = 0 */
t = veorq_s32(node_type, node_type);
/* mask for DFA type(0) nodes */
dfa_msk = vceqq_u32(node_type, t);
mask = vld1q_s32((const int32_t *)&neon_acl_const.xmm_shuffle_input);
in = vqtbl1q_u8((uint8x16_t)next_input, (uint8x16_t)mask);
/* DFA calculations. */
r = vshrq_n_u32(in, 30); /* div by 64 */
mask = vld1q_s32((const int32_t *)&neon_acl_const.range_base);
r = vaddq_u8(r, mask);
t = vshrq_n_u32(in, 24);
r = vqtbl1q_u8((uint8x16_t)tr_hi_lo.val[1], (uint8x16_t)r);
dfa_ofs = vsubq_s32(t, r);
/* QUAD/SINGLE calculations. */
t = vcgtq_s8(in, tr_hi_lo.val[1]);
t = vabsq_s8(t);
t = vpaddlq_u8(t);
quad_ofs = vpaddlq_u16(t);
/* blend DFA and QUAD/SINGLE. */
t = vbslq_u8(dfa_msk, dfa_ofs, quad_ofs);
/* calculate address for next transitions */
addr = vaddq_u32(addr, t);
/* Fill next transitions */
transitions[0] = trans[vgetq_lane_u32(addr, 0)];
transitions[1] = trans[vgetq_lane_u32(addr, 1)];
transitions[2] = trans[vgetq_lane_u32(addr, 2)];
transitions[3] = trans[vgetq_lane_u32(addr, 3)];
return vshrq_n_u32(next_input, CHAR_BIT);
}
/*
* Execute trie traversal with 8 traversals in parallel
*/
static inline int
search_neon_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
{
int n;
struct acl_flow_data flows;
uint64_t index_array[8];
struct completion cmplt[8];
struct parms parms[8];
int32x4_t input0, input1;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
total_packets, categories, ctx->trans_table);
for (n = 0; n < 8; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows, &index_array[0]);
acl_match_check_x4(4, ctx, parms, &flows, &index_array[4]);
while (flows.started > 0) {
/* Gather 4 bytes of input data for each stream. */
input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 0), input0, 0);
input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 4), input1, 0);
input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 1), input0, 1);
input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 5), input1, 1);
input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 2), input0, 2);
input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 6), input1, 2);
input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 3), input0, 3);
input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 7), input1, 3);
/* Process the 4 bytes of input on each stream. */
input0 = transition4(input0, flows.trans, &index_array[0]);
input1 = transition4(input1, flows.trans, &index_array[4]);
input0 = transition4(input0, flows.trans, &index_array[0]);
input1 = transition4(input1, flows.trans, &index_array[4]);
input0 = transition4(input0, flows.trans, &index_array[0]);
input1 = transition4(input1, flows.trans, &index_array[4]);
input0 = transition4(input0, flows.trans, &index_array[0]);
input1 = transition4(input1, flows.trans, &index_array[4]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows, &index_array[0]);
acl_match_check_x4(4, ctx, parms, &flows, &index_array[4]);
}
return 0;
}
/*
* Execute trie traversal with 4 traversals in parallel
*/
static inline int
search_neon_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, int total_packets, uint32_t categories)
{
int n;
struct acl_flow_data flows;
uint64_t index_array[4];
struct completion cmplt[4];
struct parms parms[4];
int32x4_t input;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
total_packets, categories, ctx->trans_table);
for (n = 0; n < 4; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows, index_array);
while (flows.started > 0) {
/* Gather 4 bytes of input data for each stream. */
input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 0), input, 0);
input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 1), input, 1);
input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 2), input, 2);
input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 3), input, 3);
/* Process the 4 bytes of input on each stream. */
input = transition4(input, flows.trans, index_array);
input = transition4(input, flows.trans, index_array);
input = transition4(input, flows.trans, index_array);
input = transition4(input, flows.trans, index_array);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows, index_array);
}
return 0;
}