f-stack/dpdk/app/test-crypto-perf/cperf_test_throughput.c

331 lines
8.4 KiB
C
Raw Normal View History

2018-12-06 14:17:51 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include "cperf_test_throughput.h"
#include "cperf_ops.h"
#include "cperf_test_common.h"
struct cperf_throughput_ctx {
uint8_t dev_id;
uint16_t qp_id;
uint8_t lcore_id;
struct rte_mempool *pool;
struct rte_cryptodev_sym_session *sess;
cperf_populate_ops_t populate_ops;
uint32_t src_buf_offset;
uint32_t dst_buf_offset;
const struct cperf_options *options;
const struct cperf_test_vector *test_vector;
};
static void
cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
{
if (ctx) {
if (ctx->sess) {
rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
rte_cryptodev_sym_session_free(ctx->sess);
}
if (ctx->pool)
rte_mempool_free(ctx->pool);
rte_free(ctx);
}
}
void *
cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
uint8_t dev_id, uint16_t qp_id,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector,
const struct cperf_op_fns *op_fns)
{
struct cperf_throughput_ctx *ctx = NULL;
ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
if (ctx == NULL)
goto err;
ctx->dev_id = dev_id;
ctx->qp_id = qp_id;
ctx->populate_ops = op_fns->populate_ops;
ctx->options = options;
ctx->test_vector = test_vector;
/* IV goes at the end of the crypto operation */
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
sizeof(struct rte_crypto_sym_op);
ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
iv_offset);
if (ctx->sess == NULL)
goto err;
if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
&ctx->src_buf_offset, &ctx->dst_buf_offset,
&ctx->pool) < 0)
goto err;
return ctx;
err:
cperf_throughput_test_free(ctx);
return NULL;
}
int
cperf_throughput_test_runner(void *test_ctx)
{
struct cperf_throughput_ctx *ctx = test_ctx;
uint16_t test_burst_size;
uint8_t burst_size_idx = 0;
2018-12-06 14:17:51 +00:00
uint32_t imix_idx = 0;
static int only_once;
struct rte_crypto_op *ops[ctx->options->max_burst_size];
struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
uint64_t i;
uint32_t lcore = rte_lcore_id();
#ifdef CPERF_LINEARIZATION_ENABLE
struct rte_cryptodev_info dev_info;
int linearize = 0;
/* Check if source mbufs require coalescing */
if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
rte_cryptodev_info_get(ctx->dev_id, &dev_info);
if ((dev_info.feature_flags &
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
linearize = 1;
}
#endif /* CPERF_LINEARIZATION_ENABLE */
ctx->lcore_id = lcore;
/* Warm up the host CPU before starting the test */
for (i = 0; i < ctx->options->total_ops; i++)
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
/* Get first size from range or list */
if (ctx->options->inc_burst_size != 0)
test_burst_size = ctx->options->min_burst_size;
else
test_burst_size = ctx->options->burst_size_list[0];
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
sizeof(struct rte_crypto_sym_op);
while (test_burst_size <= ctx->options->max_burst_size) {
uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
uint64_t tsc_start, tsc_end, tsc_duration;
uint16_t ops_unused = 0;
tsc_start = rte_rdtsc_precise();
while (ops_enqd_total < ctx->options->total_ops) {
uint16_t burst_size = ((ops_enqd_total + test_burst_size)
<= ctx->options->total_ops) ?
test_burst_size :
ctx->options->total_ops -
ops_enqd_total;
uint16_t ops_needed = burst_size - ops_unused;
/* Allocate objects containing crypto operations and mbufs */
if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
ops_needed) != 0) {
RTE_LOG(ERR, USER1,
"Failed to allocate more crypto operations "
2018-12-06 14:17:51 +00:00
"from the crypto operation pool.\n"
"Consider increasing the pool size "
"with --pool-sz\n");
return -1;
}
/* Setup crypto op, attach mbuf etc */
(ctx->populate_ops)(ops, ctx->src_buf_offset,
ctx->dst_buf_offset,
ops_needed, ctx->sess,
ctx->options, ctx->test_vector,
2018-12-06 14:17:51 +00:00
iv_offset, &imix_idx);
/**
* When ops_needed is smaller than ops_enqd, the
* unused ops need to be moved to the front for
* next round use.
*/
if (unlikely(ops_enqd > ops_needed)) {
size_t nb_b_to_mov = ops_unused * sizeof(
struct rte_crypto_op *);
memmove(&ops[ops_needed], &ops[ops_enqd],
nb_b_to_mov);
}
#ifdef CPERF_LINEARIZATION_ENABLE
if (linearize) {
/* PMD doesn't support scatter-gather and source buffer
* is segmented.
* We need to linearize it before enqueuing.
*/
for (i = 0; i < burst_size; i++)
rte_pktmbuf_linearize(ops[i]->sym->m_src);
}
#endif /* CPERF_LINEARIZATION_ENABLE */
/* Enqueue burst of ops on crypto device */
ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
ops, burst_size);
if (ops_enqd < burst_size)
ops_enqd_failed++;
/**
* Calculate number of ops not enqueued (mainly for hw
* accelerators whose ingress queue can fill up).
*/
ops_unused = burst_size - ops_enqd;
ops_enqd_total += ops_enqd;
/* Dequeue processed burst of ops from crypto device */
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
ops_processed, test_burst_size);
if (likely(ops_deqd)) {
/* Free crypto ops so they can be reused. */
rte_mempool_put_bulk(ctx->pool,
(void **)ops_processed, ops_deqd);
ops_deqd_total += ops_deqd;
} else {
/**
* Count dequeue polls which didn't return any
* processed operations. This statistic is mainly
* relevant to hw accelerators.
*/
ops_deqd_failed++;
}
}
/* Dequeue any operations still in the crypto device */
while (ops_deqd_total < ctx->options->total_ops) {
/* Sending 0 length burst to flush sw crypto device */
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
/* dequeue burst */
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
ops_processed, test_burst_size);
if (ops_deqd == 0)
ops_deqd_failed++;
else {
rte_mempool_put_bulk(ctx->pool,
(void **)ops_processed, ops_deqd);
ops_deqd_total += ops_deqd;
}
}
tsc_end = rte_rdtsc_precise();
tsc_duration = (tsc_end - tsc_start);
/* Calculate average operations processed per second */
double ops_per_second = ((double)ctx->options->total_ops /
tsc_duration) * rte_get_tsc_hz();
/* Calculate average throughput (Gbps) in bits per second */
double throughput_gbps = ((ops_per_second *
ctx->options->test_buffer_size * 8) / 1000000000);
/* Calculate average cycles per packet */
double cycles_per_packet = ((double)tsc_duration /
ctx->options->total_ops);
if (!ctx->options->csv) {
if (!only_once)
printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
"lcore id", "Buf Size", "Burst Size",
"Enqueued", "Dequeued", "Failed Enq",
"Failed Deq", "MOps", "Gbps",
"Cycles/Buf");
only_once = 1;
printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
"%12"PRIu64"%12.4f%12.4f%12.2f\n",
ctx->lcore_id,
ctx->options->test_buffer_size,
test_burst_size,
ops_enqd_total,
ops_deqd_total,
ops_enqd_failed,
ops_deqd_failed,
ops_per_second/1000000,
throughput_gbps,
cycles_per_packet);
} else {
if (!only_once)
printf("#lcore id,Buffer Size(B),"
"Burst Size,Enqueued,Dequeued,Failed Enq,"
"Failed Deq,Ops(Millions),Throughput(Gbps),"
"Cycles/Buf\n\n");
only_once = 1;
printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
"%.3f;%.3f;%.3f\n",
ctx->lcore_id,
ctx->options->test_buffer_size,
test_burst_size,
ops_enqd_total,
ops_deqd_total,
ops_enqd_failed,
ops_deqd_failed,
ops_per_second/1000000,
throughput_gbps,
cycles_per_packet);
}
/* Get next size from range or list */
if (ctx->options->inc_burst_size != 0)
test_burst_size += ctx->options->inc_burst_size;
else {
if (++burst_size_idx == ctx->options->burst_size_count)
break;
test_burst_size = ctx->options->burst_size_list[burst_size_idx];
}
}
return 0;
}
void
cperf_throughput_test_destructor(void *arg)
{
struct cperf_throughput_ctx *ctx = arg;
if (ctx == NULL)
return;
cperf_throughput_test_free(ctx);
}