2019-01-18 09:27:45 +00:00
|
|
|
/*-
|
|
|
|
* BSD LICENSE
|
|
|
|
*
|
|
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
2017-04-21 10:43:26 +00:00
|
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <sys/queue.h>
|
|
|
|
|
|
|
|
#include <rte_memory.h>
|
|
|
|
#include <rte_eal.h>
|
|
|
|
#include <rte_eal_memconfig.h>
|
|
|
|
#include <rte_launch.h>
|
|
|
|
#include <rte_per_lcore.h>
|
|
|
|
#include <rte_lcore.h>
|
|
|
|
#include <rte_common.h>
|
|
|
|
#include <rte_string_fns.h>
|
|
|
|
#include <rte_spinlock.h>
|
|
|
|
#include <rte_memcpy.h>
|
|
|
|
#include <rte_atomic.h>
|
|
|
|
|
|
|
|
#include "malloc_elem.h"
|
|
|
|
#include "malloc_heap.h"
|
|
|
|
|
|
|
|
static unsigned
|
|
|
|
check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
|
|
|
|
{
|
|
|
|
unsigned check_flag = 0;
|
|
|
|
|
|
|
|
if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
switch (hugepage_sz) {
|
|
|
|
case RTE_PGSIZE_256K:
|
|
|
|
check_flag = RTE_MEMZONE_256KB;
|
|
|
|
break;
|
|
|
|
case RTE_PGSIZE_2M:
|
|
|
|
check_flag = RTE_MEMZONE_2MB;
|
|
|
|
break;
|
|
|
|
case RTE_PGSIZE_16M:
|
|
|
|
check_flag = RTE_MEMZONE_16MB;
|
|
|
|
break;
|
|
|
|
case RTE_PGSIZE_256M:
|
|
|
|
check_flag = RTE_MEMZONE_256MB;
|
|
|
|
break;
|
|
|
|
case RTE_PGSIZE_512M:
|
|
|
|
check_flag = RTE_MEMZONE_512MB;
|
|
|
|
break;
|
|
|
|
case RTE_PGSIZE_1G:
|
|
|
|
check_flag = RTE_MEMZONE_1GB;
|
|
|
|
break;
|
|
|
|
case RTE_PGSIZE_4G:
|
|
|
|
check_flag = RTE_MEMZONE_4GB;
|
|
|
|
break;
|
|
|
|
case RTE_PGSIZE_16G:
|
|
|
|
check_flag = RTE_MEMZONE_16GB;
|
|
|
|
}
|
|
|
|
|
|
|
|
return check_flag & flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2019-01-18 09:27:45 +00:00
|
|
|
* Expand the heap with a memseg.
|
|
|
|
* This reserves the zone and sets a dummy malloc_elem header at the end
|
|
|
|
* to prevent overflow. The rest of the zone is added to free list as a single
|
|
|
|
* large free block
|
2017-04-21 10:43:26 +00:00
|
|
|
*/
|
2019-01-18 09:27:45 +00:00
|
|
|
static void
|
|
|
|
malloc_heap_add_memseg(struct malloc_heap *heap, struct rte_memseg *ms)
|
2017-04-21 10:43:26 +00:00
|
|
|
{
|
2019-01-18 09:27:45 +00:00
|
|
|
/* allocate the memory block headers, one at end, one at start */
|
|
|
|
struct malloc_elem *start_elem = (struct malloc_elem *)ms->addr;
|
|
|
|
struct malloc_elem *end_elem = RTE_PTR_ADD(ms->addr,
|
|
|
|
ms->len - MALLOC_ELEM_OVERHEAD);
|
|
|
|
end_elem = RTE_PTR_ALIGN_FLOOR(end_elem, RTE_CACHE_LINE_SIZE);
|
|
|
|
const size_t elem_size = (uintptr_t)end_elem - (uintptr_t)start_elem;
|
2017-04-21 10:43:26 +00:00
|
|
|
|
2019-01-18 09:27:45 +00:00
|
|
|
malloc_elem_init(start_elem, heap, ms, elem_size);
|
|
|
|
malloc_elem_mkend(end_elem, start_elem);
|
|
|
|
malloc_elem_free_list_insert(start_elem);
|
2017-04-21 10:43:26 +00:00
|
|
|
|
2019-01-18 09:27:45 +00:00
|
|
|
heap->total_size += elem_size;
|
2017-04-21 10:43:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Iterates through the freelist for a heap to find a free element
|
|
|
|
* which can store data of the required size and with the requested alignment.
|
|
|
|
* If size is 0, find the biggest available elem.
|
|
|
|
* Returns null on failure, or pointer to element on success.
|
|
|
|
*/
|
|
|
|
static struct malloc_elem *
|
|
|
|
find_suitable_element(struct malloc_heap *heap, size_t size,
|
2019-01-18 09:27:45 +00:00
|
|
|
unsigned flags, size_t align, size_t bound)
|
2017-04-21 10:43:26 +00:00
|
|
|
{
|
|
|
|
size_t idx;
|
|
|
|
struct malloc_elem *elem, *alt_elem = NULL;
|
|
|
|
|
|
|
|
for (idx = malloc_elem_free_list_index(size);
|
|
|
|
idx < RTE_HEAP_NUM_FREELISTS; idx++) {
|
|
|
|
for (elem = LIST_FIRST(&heap->free_head[idx]);
|
|
|
|
!!elem; elem = LIST_NEXT(elem, free_list)) {
|
2019-01-18 09:27:45 +00:00
|
|
|
if (malloc_elem_can_hold(elem, size, align, bound)) {
|
|
|
|
if (check_hugepage_sz(flags, elem->ms->hugepage_sz))
|
2017-04-21 10:43:26 +00:00
|
|
|
return elem;
|
|
|
|
if (alt_elem == NULL)
|
|
|
|
alt_elem = elem;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY))
|
|
|
|
return alt_elem;
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Main function to allocate a block of memory from the heap.
|
|
|
|
* It locks the free list, scans it, and adds a new memseg if the
|
|
|
|
* scan fails. Once the new memseg is added, it re-scans and should return
|
|
|
|
* the new element after releasing the lock.
|
|
|
|
*/
|
2019-01-18 09:27:45 +00:00
|
|
|
void *
|
|
|
|
malloc_heap_alloc(struct malloc_heap *heap,
|
|
|
|
const char *type __attribute__((unused)), size_t size, unsigned flags,
|
|
|
|
size_t align, size_t bound)
|
2017-04-21 10:43:26 +00:00
|
|
|
{
|
|
|
|
struct malloc_elem *elem;
|
|
|
|
|
|
|
|
size = RTE_CACHE_LINE_ROUNDUP(size);
|
|
|
|
align = RTE_CACHE_LINE_ROUNDUP(align);
|
|
|
|
|
2019-01-18 09:27:45 +00:00
|
|
|
rte_spinlock_lock(&heap->lock);
|
2018-12-06 14:17:51 +00:00
|
|
|
|
2019-01-18 09:27:45 +00:00
|
|
|
elem = find_suitable_element(heap, size, flags, align, bound);
|
2017-04-21 10:43:26 +00:00
|
|
|
if (elem != NULL) {
|
2019-01-18 09:27:45 +00:00
|
|
|
elem = malloc_elem_alloc(elem, size, align, bound);
|
2017-04-21 10:43:26 +00:00
|
|
|
/* increase heap's count of allocated elements */
|
|
|
|
heap->alloc_count++;
|
|
|
|
}
|
2019-01-18 09:27:45 +00:00
|
|
|
rte_spinlock_unlock(&heap->lock);
|
2017-04-21 10:43:26 +00:00
|
|
|
|
|
|
|
return elem == NULL ? NULL : (void *)(&elem[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2019-01-18 09:27:45 +00:00
|
|
|
* Function to retrieve data for heap on given socket
|
2017-04-21 10:43:26 +00:00
|
|
|
*/
|
|
|
|
int
|
2018-05-15 09:49:22 +00:00
|
|
|
malloc_heap_get_stats(struct malloc_heap *heap,
|
2017-04-21 10:43:26 +00:00
|
|
|
struct rte_malloc_socket_stats *socket_stats)
|
|
|
|
{
|
|
|
|
size_t idx;
|
|
|
|
struct malloc_elem *elem;
|
|
|
|
|
2018-05-15 09:49:22 +00:00
|
|
|
rte_spinlock_lock(&heap->lock);
|
|
|
|
|
2017-04-21 10:43:26 +00:00
|
|
|
/* Initialise variables for heap */
|
|
|
|
socket_stats->free_count = 0;
|
|
|
|
socket_stats->heap_freesz_bytes = 0;
|
|
|
|
socket_stats->greatest_free_size = 0;
|
|
|
|
|
|
|
|
/* Iterate through free list */
|
|
|
|
for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
|
|
|
|
for (elem = LIST_FIRST(&heap->free_head[idx]);
|
|
|
|
!!elem; elem = LIST_NEXT(elem, free_list))
|
|
|
|
{
|
|
|
|
socket_stats->free_count++;
|
|
|
|
socket_stats->heap_freesz_bytes += elem->size;
|
|
|
|
if (elem->size > socket_stats->greatest_free_size)
|
|
|
|
socket_stats->greatest_free_size = elem->size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Get stats on overall heap and allocated memory on this heap */
|
|
|
|
socket_stats->heap_totalsz_bytes = heap->total_size;
|
|
|
|
socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
|
|
|
|
socket_stats->heap_freesz_bytes);
|
|
|
|
socket_stats->alloc_count = heap->alloc_count;
|
2018-05-15 09:49:22 +00:00
|
|
|
|
|
|
|
rte_spinlock_unlock(&heap->lock);
|
2017-04-21 10:43:26 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-12-06 14:17:51 +00:00
|
|
|
int
|
2019-01-18 09:27:45 +00:00
|
|
|
rte_eal_malloc_heap_init(void)
|
2017-04-21 10:43:26 +00:00
|
|
|
{
|
|
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
2019-01-18 09:27:45 +00:00
|
|
|
unsigned ms_cnt;
|
|
|
|
struct rte_memseg *ms;
|
2017-04-21 10:43:26 +00:00
|
|
|
|
2019-01-18 09:27:45 +00:00
|
|
|
if (mcfg == NULL)
|
2017-04-21 10:43:26 +00:00
|
|
|
return -1;
|
|
|
|
|
2019-01-18 09:27:45 +00:00
|
|
|
for (ms = &mcfg->memseg[0], ms_cnt = 0;
|
|
|
|
(ms_cnt < RTE_MAX_MEMSEG) && (ms->len > 0);
|
|
|
|
ms_cnt++, ms++) {
|
|
|
|
malloc_heap_add_memseg(&mcfg->malloc_heaps[ms->socket_id], ms);
|
2017-04-21 10:43:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|