2019-01-18 09:27:45 +00:00
|
|
|
/*-
|
|
|
|
* BSD LICENSE
|
|
|
|
*
|
|
|
|
* Copyright(c) 2016 Intel Corporation. All rights reserved.
|
|
|
|
* Copyright(c) 2017 IBM Corporation.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
2018-05-15 09:49:22 +00:00
|
|
|
*/
|
|
|
|
|
2019-01-18 09:27:45 +00:00
|
|
|
|
2018-05-15 09:49:22 +00:00
|
|
|
#ifndef _L3FWD_ALTIVEC_H_
|
|
|
|
#define _L3FWD_ALTIVEC_H_
|
|
|
|
|
|
|
|
#include "l3fwd.h"
|
|
|
|
#include "l3fwd_common.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Update source and destination MAC addresses in the ethernet header.
|
|
|
|
* Perform RFC1812 checks and updates for IPV4 packets.
|
|
|
|
*/
|
|
|
|
static inline void
|
|
|
|
processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
|
|
|
|
{
|
|
|
|
vector unsigned int te[FWDSTEP];
|
|
|
|
vector unsigned int ve[FWDSTEP];
|
|
|
|
vector unsigned int *p[FWDSTEP];
|
|
|
|
|
|
|
|
p[0] = rte_pktmbuf_mtod(pkt[0], vector unsigned int *);
|
|
|
|
p[1] = rte_pktmbuf_mtod(pkt[1], vector unsigned int *);
|
|
|
|
p[2] = rte_pktmbuf_mtod(pkt[2], vector unsigned int *);
|
|
|
|
p[3] = rte_pktmbuf_mtod(pkt[3], vector unsigned int *);
|
|
|
|
|
|
|
|
ve[0] = (vector unsigned int)val_eth[dst_port[0]];
|
|
|
|
te[0] = *p[0];
|
|
|
|
|
|
|
|
ve[1] = (vector unsigned int)val_eth[dst_port[1]];
|
|
|
|
te[1] = *p[1];
|
|
|
|
|
|
|
|
ve[2] = (vector unsigned int)val_eth[dst_port[2]];
|
|
|
|
te[2] = *p[2];
|
|
|
|
|
|
|
|
ve[3] = (vector unsigned int)val_eth[dst_port[3]];
|
|
|
|
te[3] = *p[3];
|
|
|
|
|
|
|
|
/* Update first 12 bytes, keep rest bytes intact. */
|
|
|
|
te[0] = (vector unsigned int)vec_sel(
|
|
|
|
(vector unsigned short)ve[0],
|
|
|
|
(vector unsigned short)te[0],
|
|
|
|
(vector unsigned short) {0, 0, 0, 0,
|
|
|
|
0, 0, 0xffff, 0xffff});
|
|
|
|
|
|
|
|
te[1] = (vector unsigned int)vec_sel(
|
|
|
|
(vector unsigned short)ve[1],
|
|
|
|
(vector unsigned short)te[1],
|
|
|
|
(vector unsigned short) {0, 0, 0, 0,
|
|
|
|
0, 0, 0xffff, 0xffff});
|
|
|
|
|
|
|
|
te[2] = (vector unsigned int)vec_sel(
|
|
|
|
(vector unsigned short)ve[2],
|
|
|
|
(vector unsigned short)te[2],
|
|
|
|
(vector unsigned short) {0, 0, 0, 0, 0,
|
|
|
|
0, 0xffff, 0xffff});
|
|
|
|
|
|
|
|
te[3] = (vector unsigned int)vec_sel(
|
|
|
|
(vector unsigned short)ve[3],
|
|
|
|
(vector unsigned short)te[3],
|
|
|
|
(vector unsigned short) {0, 0, 0, 0,
|
|
|
|
0, 0, 0xffff, 0xffff});
|
|
|
|
|
|
|
|
*p[0] = te[0];
|
|
|
|
*p[1] = te[1];
|
|
|
|
*p[2] = te[2];
|
|
|
|
*p[3] = te[3];
|
|
|
|
|
|
|
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
|
|
|
|
&dst_port[0], pkt[0]->packet_type);
|
|
|
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
|
|
|
|
&dst_port[1], pkt[1]->packet_type);
|
|
|
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
|
|
|
|
&dst_port[2], pkt[2]->packet_type);
|
|
|
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
|
|
|
|
&dst_port[3], pkt[3]->packet_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Group consecutive packets with the same destination port in bursts of 4.
|
|
|
|
* Suppose we have array of destination ports:
|
|
|
|
* dst_port[] = {a, b, c, d,, e, ... }
|
|
|
|
* dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
|
|
|
|
* We doing 4 comparisons at once and the result is 4 bit mask.
|
|
|
|
* This mask is used as an index into prebuild array of pnum values.
|
|
|
|
*/
|
|
|
|
static inline uint16_t *
|
|
|
|
port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, vector unsigned short dp1,
|
|
|
|
vector unsigned short dp2)
|
|
|
|
{
|
|
|
|
union {
|
|
|
|
uint16_t u16[FWDSTEP + 1];
|
|
|
|
uint64_t u64;
|
|
|
|
} *pnum = (void *)pn;
|
|
|
|
|
|
|
|
int32_t v;
|
|
|
|
|
|
|
|
v = vec_any_eq(dp1, dp2);
|
|
|
|
|
|
|
|
|
|
|
|
/* update last port counter. */
|
|
|
|
lp[0] += gptbl[v].lpv;
|
|
|
|
|
|
|
|
/* if dest port value has changed. */
|
|
|
|
if (v != GRPMSK) {
|
|
|
|
pnum->u64 = gptbl[v].pnum;
|
|
|
|
pnum->u16[FWDSTEP] = 1;
|
|
|
|
lp = pnum->u16 + gptbl[v].idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
return lp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Process one packet:
|
|
|
|
* Update source and destination MAC addresses in the ethernet header.
|
|
|
|
* Perform RFC1812 checks and updates for IPV4 packets.
|
|
|
|
*/
|
|
|
|
static inline void
|
|
|
|
process_packet(struct rte_mbuf *pkt, uint16_t *dst_port)
|
|
|
|
{
|
|
|
|
struct ether_hdr *eth_hdr;
|
|
|
|
vector unsigned int te, ve;
|
|
|
|
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
|
|
|
|
|
|
|
te = *(vector unsigned int *)eth_hdr;
|
|
|
|
ve = (vector unsigned int)val_eth[dst_port[0]];
|
|
|
|
|
|
|
|
rfc1812_process((struct ipv4_hdr *)(eth_hdr + 1), dst_port,
|
|
|
|
pkt->packet_type);
|
|
|
|
|
|
|
|
/* dynamically vec_sel te and ve for MASK_ETH (0x3f) */
|
|
|
|
te = (vector unsigned int)vec_sel(
|
|
|
|
(vector unsigned short)ve,
|
|
|
|
(vector unsigned short)te,
|
|
|
|
(vector unsigned short){0, 0, 0, 0,
|
|
|
|
0, 0, 0xffff, 0xffff});
|
|
|
|
|
|
|
|
*(vector unsigned int *)eth_hdr = te;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Send packets burst from pkts_burst to the ports in dst_port array
|
|
|
|
*/
|
|
|
|
static __rte_always_inline void
|
|
|
|
send_packets_multi(struct lcore_conf *qconf, struct rte_mbuf **pkts_burst,
|
|
|
|
uint16_t dst_port[MAX_PKT_BURST], int nb_rx)
|
|
|
|
{
|
|
|
|
int32_t k;
|
|
|
|
int j = 0;
|
|
|
|
uint16_t dlp;
|
|
|
|
uint16_t *lp;
|
|
|
|
uint16_t pnum[MAX_PKT_BURST + 1];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Finish packet processing and group consecutive
|
|
|
|
* packets with the same destination port.
|
|
|
|
*/
|
|
|
|
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
|
|
|
if (k != 0) {
|
|
|
|
vector unsigned short dp1, dp2;
|
|
|
|
|
|
|
|
lp = pnum;
|
|
|
|
lp[0] = 1;
|
|
|
|
|
|
|
|
processx4_step3(pkts_burst, dst_port);
|
|
|
|
|
|
|
|
/* dp1: <d[0], d[1], d[2], d[3], ... > */
|
|
|
|
dp1 = *(vector unsigned short *)dst_port;
|
|
|
|
|
|
|
|
for (j = FWDSTEP; j != k; j += FWDSTEP) {
|
|
|
|
processx4_step3(&pkts_burst[j], &dst_port[j]);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* dp2:
|
|
|
|
* <d[j-3], d[j-2], d[j-1], d[j], ... >
|
|
|
|
*/
|
|
|
|
dp2 = *((vector unsigned short *)
|
|
|
|
&dst_port[j - FWDSTEP + 1]);
|
|
|
|
lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* dp1:
|
|
|
|
* <d[j], d[j+1], d[j+2], d[j+3], ... >
|
|
|
|
*/
|
|
|
|
dp1 = vec_sro(dp2, (vector unsigned char) {
|
|
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
|
|
0, 0, 0, (FWDSTEP - 1) * sizeof(dst_port[0])});
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
|
|
|
|
*/
|
|
|
|
dp2 = vec_perm(dp1, (vector unsigned short){},
|
|
|
|
(vector unsigned char){0xf9});
|
|
|
|
lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* remove values added by the last repeated
|
|
|
|
* dst port.
|
|
|
|
*/
|
|
|
|
lp[0]--;
|
|
|
|
dlp = dst_port[j - 1];
|
|
|
|
} else {
|
|
|
|
/* set dlp and lp to the never used values. */
|
|
|
|
dlp = BAD_PORT - 1;
|
|
|
|
lp = pnum + MAX_PKT_BURST;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Process up to last 3 packets one by one. */
|
|
|
|
switch (nb_rx % FWDSTEP) {
|
|
|
|
case 3:
|
|
|
|
process_packet(pkts_burst[j], dst_port + j);
|
|
|
|
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
|
|
|
j++;
|
|
|
|
/* fall-through */
|
|
|
|
case 2:
|
|
|
|
process_packet(pkts_burst[j], dst_port + j);
|
|
|
|
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
|
|
|
j++;
|
|
|
|
/* fall-through */
|
|
|
|
case 1:
|
|
|
|
process_packet(pkts_burst[j], dst_port + j);
|
|
|
|
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send packets out, through destination port.
|
|
|
|
* Consecutive packets with the same destination port
|
|
|
|
* are already grouped together.
|
|
|
|
* If destination port for the packet equals BAD_PORT,
|
|
|
|
* then free the packet without sending it out.
|
|
|
|
*/
|
|
|
|
for (j = 0; j < nb_rx; j += k) {
|
|
|
|
|
|
|
|
int32_t m;
|
|
|
|
uint16_t pn;
|
|
|
|
|
|
|
|
pn = dst_port[j];
|
|
|
|
k = pnum[j];
|
|
|
|
|
|
|
|
if (likely(pn != BAD_PORT))
|
|
|
|
send_packetsx4(qconf, pn, pkts_burst + j, k);
|
|
|
|
else
|
|
|
|
for (m = j; m != j + k; m++)
|
|
|
|
rte_pktmbuf_free(pkts_burst[m]);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* _L3FWD_ALTIVEC_H_ */
|