f-stack/dpdk/drivers/net/bnxt/bnxt_hwrm.c

3622 lines
98 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) Broadcom Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Broadcom Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2017-04-21 10:43:26 +00:00
*/
#include <unistd.h>
2017-04-21 10:43:26 +00:00
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_version.h>
#include "bnxt.h"
#include "bnxt_cpr.h"
#include "bnxt_filter.h"
#include "bnxt_hwrm.h"
#include "bnxt_rxq.h"
#include "bnxt_rxr.h"
#include "bnxt_ring.h"
#include "bnxt_txq.h"
#include "bnxt_txr.h"
#include "bnxt_vnic.h"
#include "hsi_struct_def_dpdk.h"
#include <rte_io.h>
#define HWRM_CMD_TIMEOUT 10000
struct bnxt_plcmodes_cfg {
uint32_t flags;
uint16_t jumbo_thresh;
uint16_t hds_offset;
uint16_t hds_threshold;
};
static int page_getenum(size_t size)
{
if (size <= 1 << 4)
return 4;
if (size <= 1 << 12)
return 12;
if (size <= 1 << 13)
return 13;
if (size <= 1 << 16)
return 16;
if (size <= 1 << 21)
return 21;
if (size <= 1 << 22)
return 22;
if (size <= 1 << 30)
return 30;
RTE_LOG(ERR, PMD, "Page size %zu out of range\n", size);
return sizeof(void *) * 8 - 1;
}
static int page_roundup(size_t size)
{
return 1 << page_getenum(size);
}
2017-04-21 10:43:26 +00:00
/*
* HWRM Functions (sent to HWRM)
* These are named bnxt_hwrm_*() and return -1 if bnxt_hwrm_send_message()
* fails (ie: a timeout), and a positive non-zero HWRM error code if the HWRM
* command was failed by the ChiMP.
*/
static int bnxt_hwrm_send_message(struct bnxt *bp, void *msg,
uint32_t msg_len)
2017-04-21 10:43:26 +00:00
{
unsigned int i;
struct input *req = msg;
struct output *resp = bp->hwrm_cmd_resp_addr;
uint32_t *data = msg;
uint8_t *bar;
uint8_t *valid;
uint16_t max_req_len = bp->max_req_len;
struct hwrm_short_input short_input = { 0 };
if (bp->flags & BNXT_FLAG_SHORT_CMD) {
void *short_cmd_req = bp->hwrm_short_cmd_req_addr;
memset(short_cmd_req, 0, bp->max_req_len);
memcpy(short_cmd_req, req, msg_len);
short_input.req_type = rte_cpu_to_le_16(req->req_type);
short_input.signature = rte_cpu_to_le_16(
HWRM_SHORT_REQ_SIGNATURE_SHORT_CMD);
short_input.size = rte_cpu_to_le_16(msg_len);
short_input.req_addr =
rte_cpu_to_le_64(bp->hwrm_short_cmd_req_dma_addr);
data = (uint32_t *)&short_input;
msg_len = sizeof(short_input);
/* Sync memory write before updating doorbell */
rte_wmb();
max_req_len = BNXT_HWRM_SHORT_REQ_LEN;
}
2017-04-21 10:43:26 +00:00
/* Write request msg to hwrm channel */
for (i = 0; i < msg_len; i += 4) {
bar = (uint8_t *)bp->bar0 + i;
rte_write32(*data, bar);
2017-04-21 10:43:26 +00:00
data++;
}
/* Zero the rest of the request space */
for (; i < max_req_len; i += 4) {
bar = (uint8_t *)bp->bar0 + i;
rte_write32(0, bar);
2017-04-21 10:43:26 +00:00
}
/* Ring channel doorbell */
bar = (uint8_t *)bp->bar0 + 0x100;
rte_write32(1, bar);
2017-04-21 10:43:26 +00:00
/* Poll for the valid bit */
for (i = 0; i < HWRM_CMD_TIMEOUT; i++) {
/* Sanity check on the resp->resp_len */
rte_rmb();
if (resp->resp_len && resp->resp_len <=
bp->max_resp_len) {
/* Last byte of resp contains the valid key */
valid = (uint8_t *)resp + resp->resp_len - 1;
if (*valid == HWRM_RESP_VALID_KEY)
break;
}
rte_delay_us(600);
2017-04-21 10:43:26 +00:00
}
if (i >= HWRM_CMD_TIMEOUT) {
RTE_LOG(ERR, PMD, "Error sending msg 0x%04x\n",
2017-04-21 10:43:26 +00:00
req->req_type);
goto err_ret;
}
return 0;
err_ret:
return -1;
}
/*
* HWRM_PREP() should be used to prepare *ALL* HWRM commands. It grabs the
* spinlock, and does initial processing.
*
* HWRM_CHECK_RESULT() returns errors on failure and may not be used. It
* releases the spinlock only if it returns. If the regular int return codes
* are not used by the function, HWRM_CHECK_RESULT() should not be used
* directly, rather it should be copied and modified to suit the function.
*
* HWRM_UNLOCK() must be called after all response processing is completed.
*/
#define HWRM_PREP(req, type) do { \
rte_spinlock_lock(&bp->hwrm_lock); \
2017-04-21 10:43:26 +00:00
memset(bp->hwrm_cmd_resp_addr, 0, bp->max_resp_len); \
req.req_type = rte_cpu_to_le_16(HWRM_##type); \
req.cmpl_ring = rte_cpu_to_le_16(-1); \
req.seq_id = rte_cpu_to_le_16(bp->hwrm_cmd_seq++); \
2017-04-21 10:43:26 +00:00
req.target_id = rte_cpu_to_le_16(0xffff); \
req.resp_addr = rte_cpu_to_le_64(bp->hwrm_cmd_resp_dma_addr); \
} while (0)
#define HWRM_CHECK_RESULT() do {\
if (rc) { \
RTE_LOG(ERR, PMD, "%s failed rc:%d\n", \
__func__, rc); \
rte_spinlock_unlock(&bp->hwrm_lock); \
2018-11-21 08:34:11 +00:00
if (rc == HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED) \
rc = -EACCES; \
else if (rc > 0) \
rc = -EINVAL; \
return rc; \
} \
if (resp->error_code) { \
rc = rte_le_to_cpu_16(resp->error_code); \
if (resp->resp_len >= 16) { \
struct hwrm_err_output *tmp_hwrm_err_op = \
(void *)resp; \
RTE_LOG(ERR, PMD, \
"%s error %d:%d:%08x:%04x\n", \
__func__, \
rc, tmp_hwrm_err_op->cmd_err, \
rte_le_to_cpu_32(\
tmp_hwrm_err_op->opaque_0), \
rte_le_to_cpu_16(\
tmp_hwrm_err_op->opaque_1)); \
} \
else { \
RTE_LOG(ERR, PMD, \
"%s error %d\n", __func__, rc); \
2017-04-21 10:43:26 +00:00
} \
rte_spinlock_unlock(&bp->hwrm_lock); \
2018-11-21 08:34:11 +00:00
if (rc == HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED) \
rc = -EACCES; \
else if (rc > 0) \
rc = -EINVAL; \
return rc; \
} \
} while (0)
#define HWRM_UNLOCK() rte_spinlock_unlock(&bp->hwrm_lock)
2017-04-21 10:43:26 +00:00
int bnxt_hwrm_cfa_l2_clear_rx_mask(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_cfa_l2_set_rx_mask_input req = {.req_type = 0 };
struct hwrm_cfa_l2_set_rx_mask_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, CFA_L2_SET_RX_MASK);
2017-04-21 10:43:26 +00:00
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.mask = 0;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp,
struct bnxt_vnic_info *vnic,
uint16_t vlan_count,
struct bnxt_vlan_table_entry *vlan_table)
2017-04-21 10:43:26 +00:00
{
int rc = 0;
struct hwrm_cfa_l2_set_rx_mask_input req = {.req_type = 0 };
struct hwrm_cfa_l2_set_rx_mask_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t mask = 0;
2018-11-21 08:34:11 +00:00
if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
return rc;
HWRM_PREP(req, CFA_L2_SET_RX_MASK);
2017-04-21 10:43:26 +00:00
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
/* FIXME add multicast flag, when multicast adding options is supported
* by ethtool.
*/
if (vnic->flags & BNXT_VNIC_INFO_BCAST)
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_BCAST;
if (vnic->flags & BNXT_VNIC_INFO_UNTAGGED)
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_VLAN_NONVLAN;
2017-04-21 10:43:26 +00:00
if (vnic->flags & BNXT_VNIC_INFO_PROMISC)
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_PROMISCUOUS;
2017-04-21 10:43:26 +00:00
if (vnic->flags & BNXT_VNIC_INFO_ALLMULTI)
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_ALL_MCAST;
if (vnic->flags & BNXT_VNIC_INFO_MCAST)
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_MCAST;
if (vnic->mc_addr_cnt) {
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_MCAST;
req.num_mc_entries = rte_cpu_to_le_32(vnic->mc_addr_cnt);
req.mc_tbl_addr = rte_cpu_to_le_64(vnic->mc_list_dma_addr);
}
if (vlan_table) {
if (!(mask & HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_VLAN_NONVLAN))
mask |= HWRM_CFA_L2_SET_RX_MASK_INPUT_MASK_VLANONLY;
req.vlan_tag_tbl_addr = rte_cpu_to_le_64(
rte_mem_virt2iova(vlan_table));
req.num_vlan_tags = rte_cpu_to_le_32((uint32_t)vlan_count);
}
req.mask = rte_cpu_to_le_32(mask);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_cfa_vlan_antispoof_cfg(struct bnxt *bp, uint16_t fid,
uint16_t vlan_count,
struct bnxt_vlan_antispoof_table_entry *vlan_table)
{
int rc = 0;
struct hwrm_cfa_vlan_antispoof_cfg_input req = {.req_type = 0 };
struct hwrm_cfa_vlan_antispoof_cfg_output *resp =
bp->hwrm_cmd_resp_addr;
/*
* Older HWRM versions did not support this command, and the set_rx_mask
* list was used for anti-spoof. In 1.8.0, the TX path configuration was
* removed from set_rx_mask call, and this command was added.
*
* This command is also present from 1.7.8.11 and higher,
* as well as 1.7.8.0
*/
if (bp->fw_ver < ((1 << 24) | (8 << 16))) {
if (bp->fw_ver != ((1 << 24) | (7 << 16) | (8 << 8))) {
if (bp->fw_ver < ((1 << 24) | (7 << 16) | (8 << 8) |
(11)))
return 0;
}
}
HWRM_PREP(req, CFA_VLAN_ANTISPOOF_CFG);
req.fid = rte_cpu_to_le_16(fid);
req.vlan_tag_mask_tbl_addr =
rte_cpu_to_le_64(rte_mem_virt2iova(vlan_table));
req.num_vlan_entries = rte_cpu_to_le_32((uint32_t)vlan_count);
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_clear_l2_filter(struct bnxt *bp,
2017-04-21 10:43:26 +00:00
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_l2_filter_free_input req = {.req_type = 0 };
struct hwrm_cfa_l2_filter_free_output *resp = bp->hwrm_cmd_resp_addr;
if (filter->fw_l2_filter_id == UINT64_MAX)
return 0;
HWRM_PREP(req, CFA_L2_FILTER_FREE);
2017-04-21 10:43:26 +00:00
req.l2_filter_id = rte_cpu_to_le_64(filter->fw_l2_filter_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
filter->fw_l2_filter_id = -1;
2017-04-21 10:43:26 +00:00
return 0;
}
int bnxt_hwrm_set_l2_filter(struct bnxt *bp,
uint16_t dst_id,
2017-04-21 10:43:26 +00:00
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_l2_filter_alloc_input req = {.req_type = 0 };
struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
const struct rte_eth_vmdq_rx_conf *conf =
&dev_conf->rx_adv_conf.vmdq_rx_conf;
2017-04-21 10:43:26 +00:00
uint32_t enables = 0;
uint16_t j = dst_id - 1;
//TODO: Is there a better way to add VLANs to each VNIC in case of VMDQ
if ((dev_conf->rxmode.mq_mode & ETH_MQ_RX_VMDQ_FLAG) &&
conf->pool_map[j].pools & (1UL << j)) {
RTE_LOG(DEBUG, PMD,
"Add vlan %u to vmdq pool %u\n",
conf->pool_map[j].vlan_id, j);
filter->l2_ivlan = conf->pool_map[j].vlan_id;
filter->enables |=
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK;
}
2017-04-21 10:43:26 +00:00
if (filter->fw_l2_filter_id != UINT64_MAX)
bnxt_hwrm_clear_l2_filter(bp, filter);
HWRM_PREP(req, CFA_L2_FILTER_ALLOC);
2017-04-21 10:43:26 +00:00
req.flags = rte_cpu_to_le_32(filter->flags);
enables = filter->enables |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_DST_ID;
req.dst_id = rte_cpu_to_le_16(dst_id);
2017-04-21 10:43:26 +00:00
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR)
memcpy(req.l2_addr, filter->l2_addr,
ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK)
memcpy(req.l2_addr_mask, filter->l2_addr_mask,
ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN)
req.l2_ovlan = filter->l2_ovlan;
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN)
2018-11-21 08:34:11 +00:00
req.l2_ivlan = filter->l2_ivlan;
2017-04-21 10:43:26 +00:00
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_OVLAN_MASK)
req.l2_ovlan_mask = filter->l2_ovlan_mask;
if (enables &
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_IVLAN_MASK)
2018-11-21 08:34:11 +00:00
req.l2_ivlan_mask = filter->l2_ivlan_mask;
if (enables & HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_SRC_ID)
req.src_id = rte_cpu_to_le_32(filter->src_id);
if (enables & HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_SRC_TYPE)
req.src_type = filter->src_type;
2017-04-21 10:43:26 +00:00
req.enables = rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
2017-04-21 10:43:26 +00:00
filter->fw_l2_filter_id = rte_le_to_cpu_64(resp->l2_filter_id);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_func_qcaps(struct bnxt *bp)
2017-04-21 10:43:26 +00:00
{
int rc = 0;
struct hwrm_func_qcaps_input req = {.req_type = 0 };
struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
uint16_t new_max_vfs;
int i;
2017-04-21 10:43:26 +00:00
HWRM_PREP(req, FUNC_QCAPS);
2017-04-21 10:43:26 +00:00
req.fid = rte_cpu_to_le_16(0xffff);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
2017-04-21 10:43:26 +00:00
bp->max_ring_grps = rte_le_to_cpu_32(resp->max_hw_ring_grps);
if (BNXT_PF(bp)) {
bp->pf.port_id = resp->port_id;
bp->pf.first_vf_id = rte_le_to_cpu_16(resp->first_vf_id);
new_max_vfs = bp->pdev->max_vfs;
if (new_max_vfs != bp->pf.max_vfs) {
if (bp->pf.vf_info)
rte_free(bp->pf.vf_info);
bp->pf.vf_info = rte_malloc("bnxt_vf_info",
sizeof(bp->pf.vf_info[0]) * new_max_vfs, 0);
bp->pf.max_vfs = new_max_vfs;
for (i = 0; i < new_max_vfs; i++) {
bp->pf.vf_info[i].fid = bp->pf.first_vf_id + i;
bp->pf.vf_info[i].vlan_table =
rte_zmalloc("VF VLAN table",
getpagesize(),
getpagesize());
if (bp->pf.vf_info[i].vlan_table == NULL)
RTE_LOG(ERR, PMD,
"Fail to alloc VLAN table for VF %d\n",
i);
else
rte_mem_lock_page(
bp->pf.vf_info[i].vlan_table);
bp->pf.vf_info[i].vlan_as_table =
rte_zmalloc("VF VLAN AS table",
getpagesize(),
getpagesize());
if (bp->pf.vf_info[i].vlan_as_table == NULL)
RTE_LOG(ERR, PMD,
"Alloc VLAN AS table for VF %d fail\n",
i);
else
rte_mem_lock_page(
bp->pf.vf_info[i].vlan_as_table);
STAILQ_INIT(&bp->pf.vf_info[i].filter);
}
}
}
2017-04-21 10:43:26 +00:00
bp->fw_fid = rte_le_to_cpu_32(resp->fid);
memcpy(bp->dflt_mac_addr, &resp->mac_address, ETHER_ADDR_LEN);
bp->max_rsscos_ctx = rte_le_to_cpu_16(resp->max_rsscos_ctx);
bp->max_cp_rings = rte_le_to_cpu_16(resp->max_cmpl_rings);
bp->max_tx_rings = rte_le_to_cpu_16(resp->max_tx_rings);
bp->max_rx_rings = rte_le_to_cpu_16(resp->max_rx_rings);
bp->max_l2_ctx = rte_le_to_cpu_16(resp->max_l2_ctxs);
/* TODO: For now, do not support VMDq/RFS on VFs. */
if (BNXT_PF(bp)) {
if (bp->pf.max_vfs)
bp->max_vnics = 1;
else
bp->max_vnics = rte_le_to_cpu_16(resp->max_vnics);
} else {
bp->max_vnics = 1;
2017-04-21 10:43:26 +00:00
}
bp->max_stat_ctx = rte_le_to_cpu_16(resp->max_stat_ctx);
if (BNXT_PF(bp))
bp->pf.total_vnics = rte_le_to_cpu_16(resp->max_vnics);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_func_reset(struct bnxt *bp)
{
int rc = 0;
struct hwrm_func_reset_input req = {.req_type = 0 };
struct hwrm_func_reset_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_RESET);
2017-04-21 10:43:26 +00:00
req.enables = rte_cpu_to_le_32(0);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_func_driver_register(struct bnxt *bp)
2017-04-21 10:43:26 +00:00
{
int rc;
struct hwrm_func_drv_rgtr_input req = {.req_type = 0 };
struct hwrm_func_drv_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
if (bp->flags & BNXT_FLAG_REGISTERED)
return 0;
HWRM_PREP(req, FUNC_DRV_RGTR);
req.enables = rte_cpu_to_le_32(HWRM_FUNC_DRV_RGTR_INPUT_ENABLES_VER |
HWRM_FUNC_DRV_RGTR_INPUT_ENABLES_ASYNC_EVENT_FWD);
2017-04-21 10:43:26 +00:00
req.ver_maj = RTE_VER_YEAR;
req.ver_min = RTE_VER_MONTH;
req.ver_upd = RTE_VER_MINOR;
if (BNXT_PF(bp)) {
req.enables |= rte_cpu_to_le_32(
HWRM_FUNC_DRV_RGTR_INPUT_ENABLES_VF_INPUT_FWD);
memcpy(req.vf_req_fwd, bp->pf.vf_req_fwd,
RTE_MIN(sizeof(req.vf_req_fwd),
sizeof(bp->pf.vf_req_fwd)));
}
req.async_event_fwd[0] |= rte_cpu_to_le_32(0x1); /* TODO: Use MACRO */
//memset(req.async_event_fwd, 0xff, sizeof(req.async_event_fwd));
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
bp->flags |= BNXT_FLAG_REGISTERED;
return rc;
}
int bnxt_hwrm_ver_get(struct bnxt *bp)
{
int rc = 0;
struct hwrm_ver_get_input req = {.req_type = 0 };
struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t my_version;
2017-04-21 10:43:26 +00:00
uint32_t fw_version;
uint16_t max_resp_len;
char type[RTE_MEMZONE_NAMESIZE];
uint32_t dev_caps_cfg;
2017-04-21 10:43:26 +00:00
bp->max_req_len = HWRM_MAX_REQ_LEN;
HWRM_PREP(req, VER_GET);
2017-04-21 10:43:26 +00:00
req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
req.hwrm_intf_min = HWRM_VERSION_MINOR;
req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
2017-04-21 10:43:26 +00:00
RTE_LOG(INFO, PMD, "%d.%d.%d:%d.%d.%d\n",
resp->hwrm_intf_maj, resp->hwrm_intf_min,
resp->hwrm_intf_upd,
resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld);
bp->fw_ver = (resp->hwrm_fw_maj << 24) | (resp->hwrm_fw_min << 16) |
(resp->hwrm_fw_bld << 8) | resp->hwrm_fw_rsvd;
RTE_LOG(INFO, PMD, "Driver HWRM version: %d.%d.%d\n",
HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, HWRM_VERSION_UPDATE);
2017-04-21 10:43:26 +00:00
my_version = HWRM_VERSION_MAJOR << 16;
my_version |= HWRM_VERSION_MINOR << 8;
my_version |= HWRM_VERSION_UPDATE;
2017-04-21 10:43:26 +00:00
fw_version = resp->hwrm_intf_maj << 16;
fw_version |= resp->hwrm_intf_min << 8;
fw_version |= resp->hwrm_intf_upd;
if (resp->hwrm_intf_maj != HWRM_VERSION_MAJOR) {
RTE_LOG(ERR, PMD, "Unsupported firmware API version\n");
2017-04-21 10:43:26 +00:00
rc = -EINVAL;
goto error;
}
if (my_version != fw_version) {
RTE_LOG(INFO, PMD, "BNXT Driver/HWRM API mismatch.\n");
if (my_version < fw_version) {
RTE_LOG(INFO, PMD,
"Firmware API version is newer than driver.\n");
RTE_LOG(INFO, PMD,
"The driver may be missing features.\n");
} else {
RTE_LOG(INFO, PMD,
"Firmware API version is older than driver.\n");
RTE_LOG(INFO, PMD,
"Not all driver features may be functional.\n");
}
}
2017-04-21 10:43:26 +00:00
if (bp->max_req_len > resp->max_req_win_len) {
RTE_LOG(ERR, PMD, "Unsupported request length\n");
2017-04-21 10:43:26 +00:00
rc = -EINVAL;
}
bp->max_req_len = rte_le_to_cpu_16(resp->max_req_win_len);
2017-04-21 10:43:26 +00:00
max_resp_len = resp->max_resp_len;
dev_caps_cfg = rte_le_to_cpu_32(resp->dev_caps_cfg);
2017-04-21 10:43:26 +00:00
if (bp->max_resp_len != max_resp_len) {
sprintf(type, "bnxt_hwrm_%04x:%02x:%02x:%02x",
bp->pdev->addr.domain, bp->pdev->addr.bus,
bp->pdev->addr.devid, bp->pdev->addr.function);
rte_free(bp->hwrm_cmd_resp_addr);
bp->hwrm_cmd_resp_addr = rte_malloc(type, max_resp_len, 0);
if (bp->hwrm_cmd_resp_addr == NULL) {
rc = -ENOMEM;
goto error;
}
rte_mem_lock_page(bp->hwrm_cmd_resp_addr);
2017-04-21 10:43:26 +00:00
bp->hwrm_cmd_resp_dma_addr =
rte_mem_virt2iova(bp->hwrm_cmd_resp_addr);
if (bp->hwrm_cmd_resp_dma_addr == 0) {
RTE_LOG(ERR, PMD,
"Unable to map response buffer to physical memory.\n");
rc = -ENOMEM;
goto error;
}
2017-04-21 10:43:26 +00:00
bp->max_resp_len = max_resp_len;
}
if ((dev_caps_cfg &
HWRM_VER_GET_OUTPUT_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
(dev_caps_cfg &
HWRM_VER_GET_OUTPUT_DEV_CAPS_CFG_SHORT_CMD_INPUTUIRED)) {
RTE_LOG(DEBUG, PMD, "Short command supported\n");
rte_free(bp->hwrm_short_cmd_req_addr);
bp->hwrm_short_cmd_req_addr = rte_malloc(type,
bp->max_req_len, 0);
if (bp->hwrm_short_cmd_req_addr == NULL) {
rc = -ENOMEM;
goto error;
}
rte_mem_lock_page(bp->hwrm_short_cmd_req_addr);
bp->hwrm_short_cmd_req_dma_addr =
rte_mem_virt2iova(bp->hwrm_short_cmd_req_addr);
if (bp->hwrm_short_cmd_req_dma_addr == 0) {
rte_free(bp->hwrm_short_cmd_req_addr);
RTE_LOG(ERR, PMD,
"Unable to map buffer to physical memory.\n");
rc = -ENOMEM;
goto error;
}
bp->flags |= BNXT_FLAG_SHORT_CMD;
}
2017-04-21 10:43:26 +00:00
error:
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_func_driver_unregister(struct bnxt *bp, uint32_t flags)
{
int rc;
struct hwrm_func_drv_unrgtr_input req = {.req_type = 0 };
struct hwrm_func_drv_unrgtr_output *resp = bp->hwrm_cmd_resp_addr;
if (!(bp->flags & BNXT_FLAG_REGISTERED))
return 0;
HWRM_PREP(req, FUNC_DRV_UNRGTR);
2017-04-21 10:43:26 +00:00
req.flags = flags;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
bp->flags &= ~BNXT_FLAG_REGISTERED;
return rc;
}
static int bnxt_hwrm_port_phy_cfg(struct bnxt *bp, struct bnxt_link_info *conf)
{
int rc = 0;
struct hwrm_port_phy_cfg_input req = {0};
2017-04-21 10:43:26 +00:00
struct hwrm_port_phy_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t enables = 0;
2017-04-21 10:43:26 +00:00
HWRM_PREP(req, PORT_PHY_CFG);
2017-04-21 10:43:26 +00:00
if (conf->link_up) {
/* Setting Fixed Speed. But AutoNeg is ON, So disable it */
if (bp->link_info.auto_mode && conf->link_speed) {
req.auto_mode = HWRM_PORT_PHY_CFG_INPUT_AUTO_MODE_NONE;
RTE_LOG(DEBUG, PMD, "Disabling AutoNeg\n");
}
req.flags = rte_cpu_to_le_32(conf->phy_flags);
req.force_link_speed = rte_cpu_to_le_16(conf->link_speed);
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_MODE;
2017-04-21 10:43:26 +00:00
/*
* Note, ChiMP FW 20.2.1 and 20.2.2 return an error when we set
* any auto mode, even "none".
*/
if (!conf->link_speed) {
/* No speeds specified. Enable AutoNeg - all speeds */
req.auto_mode =
HWRM_PORT_PHY_CFG_INPUT_AUTO_MODE_ALL_SPEEDS;
2017-04-21 10:43:26 +00:00
}
/* AutoNeg - Advertise speeds specified. */
if (conf->auto_link_speed_mask &&
!(conf->phy_flags & HWRM_PORT_PHY_CFG_INPUT_FLAGS_FORCE)) {
req.auto_mode =
HWRM_PORT_PHY_CFG_INPUT_AUTO_MODE_SPEED_MASK;
req.auto_link_speed_mask =
conf->auto_link_speed_mask;
enables |=
HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_LINK_SPEED_MASK;
}
2017-04-21 10:43:26 +00:00
req.auto_duplex = conf->duplex;
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_DUPLEX;
2017-04-21 10:43:26 +00:00
req.auto_pause = conf->auto_pause;
req.force_pause = conf->force_pause;
2017-04-21 10:43:26 +00:00
/* Set force_pause if there is no auto or if there is a force */
if (req.auto_pause && !req.force_pause)
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_AUTO_PAUSE;
2017-04-21 10:43:26 +00:00
else
enables |= HWRM_PORT_PHY_CFG_INPUT_ENABLES_FORCE_PAUSE;
req.enables = rte_cpu_to_le_32(enables);
2017-04-21 10:43:26 +00:00
} else {
req.flags =
rte_cpu_to_le_32(HWRM_PORT_PHY_CFG_INPUT_FLAGS_FORCE_LINK_DWN);
RTE_LOG(INFO, PMD, "Force Link Down\n");
2017-04-21 10:43:26 +00:00
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
static int bnxt_hwrm_port_phy_qcfg(struct bnxt *bp,
struct bnxt_link_info *link_info)
{
int rc = 0;
struct hwrm_port_phy_qcfg_input req = {0};
2017-04-21 10:43:26 +00:00
struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, PORT_PHY_QCFG);
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
2017-04-21 10:43:26 +00:00
link_info->phy_link_status = resp->link;
link_info->link_up =
(link_info->phy_link_status ==
HWRM_PORT_PHY_QCFG_OUTPUT_LINK_LINK) ? 1 : 0;
link_info->link_speed = rte_le_to_cpu_16(resp->link_speed);
link_info->duplex = resp->duplex_cfg;
2017-04-21 10:43:26 +00:00
link_info->pause = resp->pause;
link_info->auto_pause = resp->auto_pause;
link_info->force_pause = resp->force_pause;
link_info->auto_mode = resp->auto_mode;
link_info->phy_type = resp->phy_type;
link_info->media_type = resp->media_type;
2017-04-21 10:43:26 +00:00
link_info->support_speeds = rte_le_to_cpu_16(resp->support_speeds);
link_info->auto_link_speed = rte_le_to_cpu_16(resp->auto_link_speed);
link_info->preemphasis = rte_le_to_cpu_32(resp->preemphasis);
link_info->force_link_speed = rte_le_to_cpu_16(resp->force_link_speed);
2017-04-21 10:43:26 +00:00
link_info->phy_ver[0] = resp->phy_maj;
link_info->phy_ver[1] = resp->phy_min;
link_info->phy_ver[2] = resp->phy_bld;
HWRM_UNLOCK();
RTE_LOG(DEBUG, PMD, "Link Speed %d\n", link_info->link_speed);
RTE_LOG(DEBUG, PMD, "Auto Mode %d\n", link_info->auto_mode);
RTE_LOG(DEBUG, PMD, "Support Speeds %x\n", link_info->support_speeds);
RTE_LOG(DEBUG, PMD, "Auto Link Speed %x\n", link_info->auto_link_speed);
RTE_LOG(DEBUG, PMD, "Auto Link Speed Mask %x\n",
link_info->auto_link_speed_mask);
RTE_LOG(DEBUG, PMD, "Forced Link Speed %x\n",
link_info->force_link_speed);
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
{
int rc = 0;
struct hwrm_queue_qportcfg_input req = {.req_type = 0 };
struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, QUEUE_QPORTCFG);
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
2017-04-21 10:43:26 +00:00
#define GET_QUEUE_INFO(x) \
bp->cos_queue[x].id = resp->queue_id##x; \
bp->cos_queue[x].profile = resp->queue_id##x##_service_profile
GET_QUEUE_INFO(0);
GET_QUEUE_INFO(1);
GET_QUEUE_INFO(2);
GET_QUEUE_INFO(3);
GET_QUEUE_INFO(4);
GET_QUEUE_INFO(5);
GET_QUEUE_INFO(6);
GET_QUEUE_INFO(7);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_ring_alloc(struct bnxt *bp,
struct bnxt_ring *ring,
uint32_t ring_type, uint32_t map_index,
uint32_t stats_ctx_id, uint32_t cmpl_ring_id)
2017-04-21 10:43:26 +00:00
{
int rc = 0;
uint32_t enables = 0;
2017-04-21 10:43:26 +00:00
struct hwrm_ring_alloc_input req = {.req_type = 0 };
struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_ALLOC);
2017-04-21 10:43:26 +00:00
req.page_tbl_addr = rte_cpu_to_le_64(ring->bd_dma);
req.fbo = rte_cpu_to_le_32(0);
/* Association of ring index with doorbell index */
req.logical_id = rte_cpu_to_le_16(map_index);
req.length = rte_cpu_to_le_32(ring->ring_size);
2017-04-21 10:43:26 +00:00
switch (ring_type) {
case HWRM_RING_ALLOC_INPUT_RING_TYPE_TX:
req.queue_id = bp->cos_queue[0].id;
/* FALLTHROUGH */
2017-04-21 10:43:26 +00:00
case HWRM_RING_ALLOC_INPUT_RING_TYPE_RX:
req.ring_type = ring_type;
req.cmpl_ring_id = rte_cpu_to_le_16(cmpl_ring_id);
2017-04-21 10:43:26 +00:00
req.stat_ctx_id = rte_cpu_to_le_16(stats_ctx_id);
if (stats_ctx_id != INVALID_STATS_CTX_ID)
enables |=
HWRM_RING_ALLOC_INPUT_ENABLES_STAT_CTX_ID_VALID;
2017-04-21 10:43:26 +00:00
break;
case HWRM_RING_ALLOC_INPUT_RING_TYPE_L2_CMPL:
2017-04-21 10:43:26 +00:00
req.ring_type = ring_type;
/*
* TODO: Some HWRM versions crash with
* HWRM_RING_ALLOC_INPUT_INT_MODE_POLL
*/
req.int_mode = HWRM_RING_ALLOC_INPUT_INT_MODE_MSIX;
break;
default:
RTE_LOG(ERR, PMD, "hwrm alloc invalid ring type %d\n",
2017-04-21 10:43:26 +00:00
ring_type);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return -1;
}
req.enables = rte_cpu_to_le_32(enables);
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
if (rc || resp->error_code) {
if (rc == 0 && resp->error_code)
rc = rte_le_to_cpu_16(resp->error_code);
switch (ring_type) {
case HWRM_RING_FREE_INPUT_RING_TYPE_L2_CMPL:
RTE_LOG(ERR, PMD,
2017-04-21 10:43:26 +00:00
"hwrm_ring_alloc cp failed. rc:%d\n", rc);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_RX:
RTE_LOG(ERR, PMD,
2017-04-21 10:43:26 +00:00
"hwrm_ring_alloc rx failed. rc:%d\n", rc);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_TX:
RTE_LOG(ERR, PMD,
2017-04-21 10:43:26 +00:00
"hwrm_ring_alloc tx failed. rc:%d\n", rc);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
default:
RTE_LOG(ERR, PMD, "Invalid ring. rc:%d\n", rc);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
}
ring->fw_ring_id = rte_le_to_cpu_16(resp->ring_id);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_ring_free(struct bnxt *bp,
struct bnxt_ring *ring, uint32_t ring_type)
{
int rc;
struct hwrm_ring_free_input req = {.req_type = 0 };
struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_FREE);
2017-04-21 10:43:26 +00:00
req.ring_type = ring_type;
req.ring_id = rte_cpu_to_le_16(ring->fw_ring_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
if (rc || resp->error_code) {
if (rc == 0 && resp->error_code)
rc = rte_le_to_cpu_16(resp->error_code);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
switch (ring_type) {
case HWRM_RING_FREE_INPUT_RING_TYPE_L2_CMPL:
RTE_LOG(ERR, PMD, "hwrm_ring_free cp failed. rc:%d\n",
2017-04-21 10:43:26 +00:00
rc);
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_RX:
RTE_LOG(ERR, PMD, "hwrm_ring_free rx failed. rc:%d\n",
2017-04-21 10:43:26 +00:00
rc);
return rc;
case HWRM_RING_FREE_INPUT_RING_TYPE_TX:
RTE_LOG(ERR, PMD, "hwrm_ring_free tx failed. rc:%d\n",
2017-04-21 10:43:26 +00:00
rc);
return rc;
default:
RTE_LOG(ERR, PMD, "Invalid ring, rc:%d\n", rc);
2017-04-21 10:43:26 +00:00
return rc;
}
}
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return 0;
}
int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp, unsigned int idx)
{
int rc = 0;
struct hwrm_ring_grp_alloc_input req = {.req_type = 0 };
struct hwrm_ring_grp_alloc_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_GRP_ALLOC);
2017-04-21 10:43:26 +00:00
req.cr = rte_cpu_to_le_16(bp->grp_info[idx].cp_fw_ring_id);
req.rr = rte_cpu_to_le_16(bp->grp_info[idx].rx_fw_ring_id);
req.ar = rte_cpu_to_le_16(bp->grp_info[idx].ag_fw_ring_id);
req.sc = rte_cpu_to_le_16(bp->grp_info[idx].fw_stats_ctx);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
2017-04-21 10:43:26 +00:00
bp->grp_info[idx].fw_grp_id =
rte_le_to_cpu_16(resp->ring_group_id);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_ring_grp_free(struct bnxt *bp, unsigned int idx)
{
int rc;
struct hwrm_ring_grp_free_input req = {.req_type = 0 };
struct hwrm_ring_grp_free_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, RING_GRP_FREE);
2017-04-21 10:43:26 +00:00
req.ring_group_id = rte_cpu_to_le_16(bp->grp_info[idx].fw_grp_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
bp->grp_info[idx].fw_grp_id = INVALID_HW_RING_ID;
return rc;
}
int bnxt_hwrm_stat_clear(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
{
int rc = 0;
struct hwrm_stat_ctx_clr_stats_input req = {.req_type = 0 };
struct hwrm_stat_ctx_clr_stats_output *resp = bp->hwrm_cmd_resp_addr;
if (cpr->hw_stats_ctx_id == (uint32_t)HWRM_NA_SIGNATURE)
return rc;
HWRM_PREP(req, STAT_CTX_CLR_STATS);
2017-04-21 10:43:26 +00:00
req.stat_ctx_id = rte_cpu_to_le_16(cpr->hw_stats_ctx_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
unsigned int idx __rte_unused)
2017-04-21 10:43:26 +00:00
{
int rc;
struct hwrm_stat_ctx_alloc_input req = {.req_type = 0 };
struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, STAT_CTX_ALLOC);
2017-04-21 10:43:26 +00:00
req.update_period_ms = rte_cpu_to_le_32(0);
2017-04-21 10:43:26 +00:00
req.stats_dma_addr =
rte_cpu_to_le_64(cpr->hw_stats_map);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
2017-04-21 10:43:26 +00:00
cpr->hw_stats_ctx_id = rte_le_to_cpu_16(resp->stat_ctx_id);
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_stat_ctx_free(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
unsigned int idx __rte_unused)
2017-04-21 10:43:26 +00:00
{
int rc;
struct hwrm_stat_ctx_free_input req = {.req_type = 0 };
struct hwrm_stat_ctx_free_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, STAT_CTX_FREE);
2017-04-21 10:43:26 +00:00
req.stat_ctx_id = rte_cpu_to_le_16(cpr->hw_stats_ctx_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0, i, j;
struct hwrm_vnic_alloc_input req = { 0 };
2017-04-21 10:43:26 +00:00
struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
/* map ring groups to this vnic */
RTE_LOG(DEBUG, PMD, "Alloc VNIC. Start %x, End %x\n",
vnic->start_grp_id, vnic->end_grp_id);
2018-11-21 08:34:11 +00:00
for (i = vnic->start_grp_id, j = 0; i < vnic->end_grp_id; i++, j++)
2017-04-21 10:43:26 +00:00
vnic->fw_grp_ids[j] = bp->grp_info[i].fw_grp_id;
2018-11-21 08:34:11 +00:00
vnic->dflt_ring_grp = bp->grp_info[vnic->start_grp_id].fw_grp_id;
vnic->rss_rule = (uint16_t)HWRM_NA_SIGNATURE;
vnic->cos_rule = (uint16_t)HWRM_NA_SIGNATURE;
vnic->lb_rule = (uint16_t)HWRM_NA_SIGNATURE;
vnic->mru = bp->eth_dev->data->mtu + ETHER_HDR_LEN +
ETHER_CRC_LEN + VLAN_TAG_SIZE;
HWRM_PREP(req, VNIC_ALLOC);
if (vnic->func_default)
2018-11-21 08:34:11 +00:00
req.flags =
rte_cpu_to_le_32(HWRM_VNIC_ALLOC_INPUT_FLAGS_DEFAULT);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
vnic->fw_vnic_id = rte_le_to_cpu_16(resp->vnic_id);
HWRM_UNLOCK();
RTE_LOG(DEBUG, PMD, "VNIC ID %x\n", vnic->fw_vnic_id);
return rc;
}
static int bnxt_hwrm_vnic_plcmodes_qcfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic,
struct bnxt_plcmodes_cfg *pmode)
{
int rc = 0;
struct hwrm_vnic_plcmodes_qcfg_input req = {.req_type = 0 };
struct hwrm_vnic_plcmodes_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
2017-04-21 10:43:26 +00:00
HWRM_PREP(req, VNIC_PLCMODES_QCFG);
2017-04-21 10:43:26 +00:00
2018-11-21 08:34:11 +00:00
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
pmode->flags = rte_le_to_cpu_32(resp->flags);
/* dflt_vnic bit doesn't exist in the _cfg command */
pmode->flags &= ~(HWRM_VNIC_PLCMODES_QCFG_OUTPUT_FLAGS_DFLT_VNIC);
pmode->jumbo_thresh = rte_le_to_cpu_16(resp->jumbo_thresh);
pmode->hds_offset = rte_le_to_cpu_16(resp->hds_offset);
pmode->hds_threshold = rte_le_to_cpu_16(resp->hds_threshold);
HWRM_UNLOCK();
return rc;
}
static int bnxt_hwrm_vnic_plcmodes_cfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic,
struct bnxt_plcmodes_cfg *pmode)
{
int rc = 0;
struct hwrm_vnic_plcmodes_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_plcmodes_cfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_PLCMODES_CFG);
2018-11-21 08:34:11 +00:00
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.flags = rte_cpu_to_le_32(pmode->flags);
req.jumbo_thresh = rte_cpu_to_le_16(pmode->jumbo_thresh);
req.hds_offset = rte_cpu_to_le_16(pmode->hds_offset);
req.hds_threshold = rte_cpu_to_le_16(pmode->hds_threshold);
req.enables = rte_cpu_to_le_32(
HWRM_VNIC_PLCMODES_CFG_INPUT_ENABLES_HDS_THRESHOLD_VALID |
HWRM_VNIC_PLCMODES_CFG_INPUT_ENABLES_HDS_OFFSET_VALID |
HWRM_VNIC_PLCMODES_CFG_INPUT_ENABLES_JUMBO_THRESH_VALID
);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t ctx_enable_flag = 0;
struct bnxt_plcmodes_cfg pmodes;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
RTE_LOG(DEBUG, PMD, "VNIC ID %x\n", vnic->fw_vnic_id);
return rc;
}
rc = bnxt_hwrm_vnic_plcmodes_qcfg(bp, vnic, &pmodes);
if (rc)
return rc;
2017-04-21 10:43:26 +00:00
HWRM_PREP(req, VNIC_CFG);
2017-04-21 10:43:26 +00:00
/* Only RSS support for now TBD: COS & LB */
req.enables =
rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_ENABLES_DFLT_RING_GRP);
if (vnic->lb_rule != 0xffff)
ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_LB_RULE;
if (vnic->cos_rule != 0xffff)
ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_COS_RULE;
if (vnic->rss_rule != 0xffff) {
ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_MRU;
ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_RSS_RULE;
}
req.enables |= rte_cpu_to_le_32(ctx_enable_flag);
2017-04-21 10:43:26 +00:00
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.dflt_ring_grp = rte_cpu_to_le_16(vnic->dflt_ring_grp);
req.rss_rule = rte_cpu_to_le_16(vnic->rss_rule);
req.cos_rule = rte_cpu_to_le_16(vnic->cos_rule);
req.lb_rule = rte_cpu_to_le_16(vnic->lb_rule);
req.mru = rte_cpu_to_le_16(vnic->mru);
if (vnic->func_default)
req.flags |=
rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_FLAGS_DEFAULT);
2017-04-21 10:43:26 +00:00
if (vnic->vlan_strip)
req.flags |=
rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_FLAGS_VLAN_STRIP_MODE);
if (vnic->bd_stall)
req.flags |=
rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_FLAGS_BD_STALL_MODE);
if (vnic->roce_dual)
req.flags |= rte_cpu_to_le_32(
HWRM_VNIC_QCFG_OUTPUT_FLAGS_ROCE_DUAL_VNIC_MODE);
if (vnic->roce_only)
req.flags |= rte_cpu_to_le_32(
HWRM_VNIC_QCFG_OUTPUT_FLAGS_ROCE_ONLY_VNIC_MODE);
if (vnic->rss_dflt_cr)
req.flags |= rte_cpu_to_le_32(
HWRM_VNIC_QCFG_OUTPUT_FLAGS_RSS_DFLT_CR_MODE);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
rc = bnxt_hwrm_vnic_plcmodes_cfg(bp, vnic, &pmodes);
return rc;
}
int bnxt_hwrm_vnic_qcfg(struct bnxt *bp, struct bnxt_vnic_info *vnic,
int16_t fw_vf_id)
{
int rc = 0;
struct hwrm_vnic_qcfg_input req = {.req_type = 0 };
struct hwrm_vnic_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
RTE_LOG(DEBUG, PMD, "VNIC QCFG ID %d\n", vnic->fw_vnic_id);
return rc;
}
HWRM_PREP(req, VNIC_QCFG);
req.enables =
rte_cpu_to_le_32(HWRM_VNIC_QCFG_INPUT_ENABLES_VF_ID_VALID);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.vf_id = rte_cpu_to_le_16(fw_vf_id);
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
vnic->dflt_ring_grp = rte_le_to_cpu_16(resp->dflt_ring_grp);
vnic->rss_rule = rte_le_to_cpu_16(resp->rss_rule);
vnic->cos_rule = rte_le_to_cpu_16(resp->cos_rule);
vnic->lb_rule = rte_le_to_cpu_16(resp->lb_rule);
vnic->mru = rte_le_to_cpu_16(resp->mru);
vnic->func_default = rte_le_to_cpu_32(
resp->flags) & HWRM_VNIC_QCFG_OUTPUT_FLAGS_DEFAULT;
vnic->vlan_strip = rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCFG_OUTPUT_FLAGS_VLAN_STRIP_MODE;
vnic->bd_stall = rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCFG_OUTPUT_FLAGS_BD_STALL_MODE;
vnic->roce_dual = rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCFG_OUTPUT_FLAGS_ROCE_DUAL_VNIC_MODE;
vnic->roce_only = rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCFG_OUTPUT_FLAGS_ROCE_ONLY_VNIC_MODE;
vnic->rss_dflt_cr = rte_le_to_cpu_32(resp->flags) &
HWRM_VNIC_QCFG_OUTPUT_FLAGS_RSS_DFLT_CR_MODE;
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {.req_type = 0 };
struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_RSS_COS_LB_CTX_ALLOC);
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
2017-04-21 10:43:26 +00:00
vnic->rss_rule = rte_le_to_cpu_16(resp->rss_cos_lb_ctx_id);
HWRM_UNLOCK();
RTE_LOG(DEBUG, PMD, "VNIC RSS Rule %x\n", vnic->rss_rule);
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_vnic_ctx_free(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {.req_type = 0 };
struct hwrm_vnic_rss_cos_lb_ctx_free_output *resp =
bp->hwrm_cmd_resp_addr;
if (vnic->rss_rule == 0xffff) {
RTE_LOG(DEBUG, PMD, "VNIC RSS Rule %x\n", vnic->rss_rule);
return rc;
}
HWRM_PREP(req, VNIC_RSS_COS_LB_CTX_FREE);
2017-04-21 10:43:26 +00:00
req.rss_cos_lb_ctx_id = rte_cpu_to_le_16(vnic->rss_rule);
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
vnic->rss_rule = INVALID_HW_RING_ID;
2017-04-21 10:43:26 +00:00
return rc;
}
int bnxt_hwrm_vnic_free(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_free_input req = {.req_type = 0 };
struct hwrm_vnic_free_output *resp = bp->hwrm_cmd_resp_addr;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
RTE_LOG(DEBUG, PMD, "VNIC FREE ID %x\n", vnic->fw_vnic_id);
2017-04-21 10:43:26 +00:00
return rc;
}
2017-04-21 10:43:26 +00:00
HWRM_PREP(req, VNIC_FREE);
2017-04-21 10:43:26 +00:00
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
vnic->fw_vnic_id = INVALID_HW_RING_ID;
return rc;
}
int bnxt_hwrm_vnic_rss_cfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_rss_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_rss_cfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_RSS_CFG);
2017-04-21 10:43:26 +00:00
req.hash_type = rte_cpu_to_le_32(vnic->hash_type);
req.ring_grp_tbl_addr =
rte_cpu_to_le_64(vnic->rss_table_dma_addr);
req.hash_key_tbl_addr =
rte_cpu_to_le_64(vnic->rss_hash_key_dma_addr);
req.rss_ctx_idx = rte_cpu_to_le_16(vnic->rss_rule);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_vnic_plcmode_cfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic)
{
int rc = 0;
struct hwrm_vnic_plcmodes_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_plcmodes_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint16_t size;
2018-11-21 08:34:11 +00:00
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
RTE_LOG(DEBUG, PMD, "VNIC ID %x\n", vnic->fw_vnic_id);
2018-11-21 08:34:11 +00:00
return rc;
}
HWRM_PREP(req, VNIC_PLCMODES_CFG);
req.flags = rte_cpu_to_le_32(
HWRM_VNIC_PLCMODES_CFG_INPUT_FLAGS_JUMBO_PLACEMENT);
req.enables = rte_cpu_to_le_32(
HWRM_VNIC_PLCMODES_CFG_INPUT_ENABLES_JUMBO_THRESH_VALID);
size = rte_pktmbuf_data_room_size(bp->rx_queues[0]->mb_pool);
size -= RTE_PKTMBUF_HEADROOM;
req.jumbo_thresh = rte_cpu_to_le_16(size);
2018-11-21 08:34:11 +00:00
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_vnic_tpa_cfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic, bool enable)
{
int rc = 0;
struct hwrm_vnic_tpa_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_tpa_cfg_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, VNIC_TPA_CFG);
if (enable) {
req.enables = rte_cpu_to_le_32(
HWRM_VNIC_TPA_CFG_INPUT_ENABLES_MAX_AGG_SEGS |
HWRM_VNIC_TPA_CFG_INPUT_ENABLES_MAX_AGGS |
HWRM_VNIC_TPA_CFG_INPUT_ENABLES_MIN_AGG_LEN);
req.flags = rte_cpu_to_le_32(
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_TPA |
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_ENCAP_TPA |
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_RSC_WND_UPDATE |
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_GRO |
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_AGG_WITH_ECN |
HWRM_VNIC_TPA_CFG_INPUT_FLAGS_AGG_WITH_SAME_GRE_SEQ);
req.max_agg_segs = rte_cpu_to_le_16(5);
req.max_aggs =
rte_cpu_to_le_16(HWRM_VNIC_TPA_CFG_INPUT_MAX_AGGS_MAX);
req.min_agg_len = rte_cpu_to_le_32(512);
}
2018-11-21 08:34:11 +00:00
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_vf_mac(struct bnxt *bp, uint16_t vf, const uint8_t *mac_addr)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
req.flags = rte_cpu_to_le_32(bp->pf.vf_info[vf].func_cfg_flags);
req.enables = rte_cpu_to_le_32(
HWRM_FUNC_CFG_INPUT_ENABLES_DFLT_MAC_ADDR);
memcpy(req.dflt_mac_addr, mac_addr, sizeof(req.dflt_mac_addr));
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
HWRM_PREP(req, FUNC_CFG);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
bp->pf.vf_info[vf].random_mac = false;
return rc;
}
int bnxt_hwrm_func_qstats_tx_drop(struct bnxt *bp, uint16_t fid,
uint64_t *dropped)
{
int rc = 0;
struct hwrm_func_qstats_input req = {.req_type = 0};
struct hwrm_func_qstats_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_QSTATS);
req.fid = rte_cpu_to_le_16(fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
if (dropped)
*dropped = rte_le_to_cpu_64(resp->tx_drop_pkts);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_qstats(struct bnxt *bp, uint16_t fid,
struct rte_eth_stats *stats)
{
int rc = 0;
struct hwrm_func_qstats_input req = {.req_type = 0};
struct hwrm_func_qstats_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_QSTATS);
req.fid = rte_cpu_to_le_16(fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
stats->ipackets = rte_le_to_cpu_64(resp->rx_ucast_pkts);
stats->ipackets += rte_le_to_cpu_64(resp->rx_mcast_pkts);
stats->ipackets += rte_le_to_cpu_64(resp->rx_bcast_pkts);
stats->ibytes = rte_le_to_cpu_64(resp->rx_ucast_bytes);
stats->ibytes += rte_le_to_cpu_64(resp->rx_mcast_bytes);
stats->ibytes += rte_le_to_cpu_64(resp->rx_bcast_bytes);
stats->opackets = rte_le_to_cpu_64(resp->tx_ucast_pkts);
stats->opackets += rte_le_to_cpu_64(resp->tx_mcast_pkts);
stats->opackets += rte_le_to_cpu_64(resp->tx_bcast_pkts);
stats->obytes = rte_le_to_cpu_64(resp->tx_ucast_bytes);
stats->obytes += rte_le_to_cpu_64(resp->tx_mcast_bytes);
stats->obytes += rte_le_to_cpu_64(resp->tx_bcast_bytes);
stats->ierrors = rte_le_to_cpu_64(resp->rx_err_pkts);
stats->oerrors = rte_le_to_cpu_64(resp->tx_err_pkts);
stats->imissed = rte_le_to_cpu_64(resp->rx_drop_pkts);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_clr_stats(struct bnxt *bp, uint16_t fid)
{
int rc = 0;
struct hwrm_func_clr_stats_input req = {.req_type = 0};
struct hwrm_func_clr_stats_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_CLR_STATS);
req.fid = rte_cpu_to_le_16(fid);
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2017-04-21 10:43:26 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
2017-04-21 10:43:26 +00:00
return rc;
}
/*
* HWRM utility functions
*/
int bnxt_clear_all_hwrm_stat_ctxs(struct bnxt *bp)
{
unsigned int i;
int rc = 0;
for (i = 0; i < bp->rx_cp_nr_rings + bp->tx_cp_nr_rings; i++) {
struct bnxt_tx_queue *txq;
struct bnxt_rx_queue *rxq;
struct bnxt_cp_ring_info *cpr;
if (i >= bp->rx_cp_nr_rings) {
txq = bp->tx_queues[i - bp->rx_cp_nr_rings];
cpr = txq->cp_ring;
} else {
rxq = bp->rx_queues[i];
cpr = rxq->cp_ring;
}
rc = bnxt_hwrm_stat_clear(bp, cpr);
if (rc)
return rc;
}
return 0;
}
int bnxt_free_all_hwrm_stat_ctxs(struct bnxt *bp)
{
int rc;
unsigned int i;
struct bnxt_cp_ring_info *cpr;
for (i = 0; i < bp->rx_cp_nr_rings + bp->tx_cp_nr_rings; i++) {
if (i >= bp->rx_cp_nr_rings) {
2017-04-21 10:43:26 +00:00
cpr = bp->tx_queues[i - bp->rx_cp_nr_rings]->cp_ring;
} else {
2017-04-21 10:43:26 +00:00
cpr = bp->rx_queues[i]->cp_ring;
bp->grp_info[i].fw_stats_ctx = -1;
}
2017-04-21 10:43:26 +00:00
if (cpr->hw_stats_ctx_id != HWRM_NA_SIGNATURE) {
rc = bnxt_hwrm_stat_ctx_free(bp, cpr, i);
cpr->hw_stats_ctx_id = HWRM_NA_SIGNATURE;
2017-04-21 10:43:26 +00:00
if (rc)
return rc;
}
}
return 0;
}
int bnxt_alloc_all_hwrm_stat_ctxs(struct bnxt *bp)
{
unsigned int i;
int rc = 0;
for (i = 0; i < bp->rx_cp_nr_rings + bp->tx_cp_nr_rings; i++) {
struct bnxt_tx_queue *txq;
struct bnxt_rx_queue *rxq;
struct bnxt_cp_ring_info *cpr;
if (i >= bp->rx_cp_nr_rings) {
txq = bp->tx_queues[i - bp->rx_cp_nr_rings];
cpr = txq->cp_ring;
} else {
rxq = bp->rx_queues[i];
cpr = rxq->cp_ring;
}
rc = bnxt_hwrm_stat_ctx_alloc(bp, cpr, i);
2017-04-21 10:43:26 +00:00
if (rc)
return rc;
}
return rc;
}
int bnxt_free_all_hwrm_ring_grps(struct bnxt *bp)
{
uint16_t idx;
2017-04-21 10:43:26 +00:00
uint32_t rc = 0;
for (idx = 0; idx < bp->rx_cp_nr_rings; idx++) {
2017-04-21 10:43:26 +00:00
if (bp->grp_info[idx].fw_grp_id == INVALID_HW_RING_ID)
2017-04-21 10:43:26 +00:00
continue;
rc = bnxt_hwrm_ring_grp_free(bp, idx);
if (rc)
return rc;
}
return rc;
}
static void bnxt_free_cp_ring(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
unsigned int idx __rte_unused)
2017-04-21 10:43:26 +00:00
{
struct bnxt_ring *cp_ring = cpr->cp_ring_struct;
bnxt_hwrm_ring_free(bp, cp_ring,
HWRM_RING_FREE_INPUT_RING_TYPE_L2_CMPL);
2017-04-21 10:43:26 +00:00
cp_ring->fw_ring_id = INVALID_HW_RING_ID;
memset(cpr->cp_desc_ring, 0, cpr->cp_ring_struct->ring_size *
sizeof(*cpr->cp_desc_ring));
cpr->cp_raw_cons = 0;
}
int bnxt_free_all_hwrm_rings(struct bnxt *bp)
{
unsigned int i;
int rc = 0;
2017-04-21 10:43:26 +00:00
for (i = 0; i < bp->tx_cp_nr_rings; i++) {
struct bnxt_tx_queue *txq = bp->tx_queues[i];
struct bnxt_tx_ring_info *txr = txq->tx_ring;
struct bnxt_ring *ring = txr->tx_ring_struct;
struct bnxt_cp_ring_info *cpr = txq->cp_ring;
unsigned int idx = bp->rx_cp_nr_rings + i + 1;
2017-04-21 10:43:26 +00:00
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_hwrm_ring_free(bp, ring,
HWRM_RING_FREE_INPUT_RING_TYPE_TX);
ring->fw_ring_id = INVALID_HW_RING_ID;
memset(txr->tx_desc_ring, 0,
txr->tx_ring_struct->ring_size *
sizeof(*txr->tx_desc_ring));
memset(txr->tx_buf_ring, 0,
txr->tx_ring_struct->ring_size *
sizeof(*txr->tx_buf_ring));
txr->tx_prod = 0;
txr->tx_cons = 0;
}
if (cpr->cp_ring_struct->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_free_cp_ring(bp, cpr, idx);
cpr->cp_ring_struct->fw_ring_id = INVALID_HW_RING_ID;
}
2017-04-21 10:43:26 +00:00
}
for (i = 0; i < bp->rx_cp_nr_rings; i++) {
struct bnxt_rx_queue *rxq = bp->rx_queues[i];
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
struct bnxt_ring *ring = rxr->rx_ring_struct;
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
unsigned int idx = i + 1;
2017-04-21 10:43:26 +00:00
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_hwrm_ring_free(bp, ring,
HWRM_RING_FREE_INPUT_RING_TYPE_RX);
ring->fw_ring_id = INVALID_HW_RING_ID;
bp->grp_info[idx].rx_fw_ring_id = INVALID_HW_RING_ID;
memset(rxr->rx_desc_ring, 0,
rxr->rx_ring_struct->ring_size *
sizeof(*rxr->rx_desc_ring));
memset(rxr->rx_buf_ring, 0,
rxr->rx_ring_struct->ring_size *
sizeof(*rxr->rx_buf_ring));
rxr->rx_prod = 0;
}
ring = rxr->ag_ring_struct;
if (ring->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_hwrm_ring_free(bp, ring,
HWRM_RING_FREE_INPUT_RING_TYPE_RX);
ring->fw_ring_id = INVALID_HW_RING_ID;
memset(rxr->ag_buf_ring, 0,
rxr->ag_ring_struct->ring_size *
sizeof(*rxr->ag_buf_ring));
rxr->ag_prod = 0;
bp->grp_info[i].ag_fw_ring_id = INVALID_HW_RING_ID;
}
if (cpr->cp_ring_struct->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_free_cp_ring(bp, cpr, idx);
bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
cpr->cp_ring_struct->fw_ring_id = INVALID_HW_RING_ID;
}
}
/* Default completion ring */
{
struct bnxt_cp_ring_info *cpr = bp->def_cp_ring;
if (cpr->cp_ring_struct->fw_ring_id != INVALID_HW_RING_ID) {
bnxt_free_cp_ring(bp, cpr, 0);
cpr->cp_ring_struct->fw_ring_id = INVALID_HW_RING_ID;
}
}
return rc;
2017-04-21 10:43:26 +00:00
}
int bnxt_alloc_all_hwrm_ring_grps(struct bnxt *bp)
{
uint16_t i;
uint32_t rc = 0;
for (i = 0; i < bp->rx_cp_nr_rings; i++) {
rc = bnxt_hwrm_ring_grp_alloc(bp, i);
2017-04-21 10:43:26 +00:00
if (rc)
return rc;
}
return rc;
}
void bnxt_free_hwrm_resources(struct bnxt *bp)
{
/* Release memzone */
rte_free(bp->hwrm_cmd_resp_addr);
rte_free(bp->hwrm_short_cmd_req_addr);
2017-04-21 10:43:26 +00:00
bp->hwrm_cmd_resp_addr = NULL;
bp->hwrm_short_cmd_req_addr = NULL;
2017-04-21 10:43:26 +00:00
bp->hwrm_cmd_resp_dma_addr = 0;
bp->hwrm_short_cmd_req_dma_addr = 0;
2017-04-21 10:43:26 +00:00
}
int bnxt_alloc_hwrm_resources(struct bnxt *bp)
{
struct rte_pci_device *pdev = bp->pdev;
char type[RTE_MEMZONE_NAMESIZE];
sprintf(type, "bnxt_hwrm_%04x:%02x:%02x:%02x", pdev->addr.domain,
pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
bp->max_resp_len = HWRM_MAX_RESP_LEN;
bp->hwrm_cmd_resp_addr = rte_malloc(type, bp->max_resp_len, 0);
rte_mem_lock_page(bp->hwrm_cmd_resp_addr);
2017-04-21 10:43:26 +00:00
if (bp->hwrm_cmd_resp_addr == NULL)
return -ENOMEM;
bp->hwrm_cmd_resp_dma_addr =
rte_mem_virt2iova(bp->hwrm_cmd_resp_addr);
if (bp->hwrm_cmd_resp_dma_addr == 0) {
RTE_LOG(ERR, PMD,
"unable to map response address to physical memory\n");
return -ENOMEM;
}
2017-04-21 10:43:26 +00:00
rte_spinlock_init(&bp->hwrm_lock);
return 0;
}
int bnxt_clear_hwrm_vnic_filters(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter;
int rc = 0;
STAILQ_FOREACH(filter, &vnic->filter, next) {
if (filter->filter_type == HWRM_CFA_EM_FILTER)
rc = bnxt_hwrm_clear_em_filter(bp, filter);
else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
rc = bnxt_hwrm_clear_ntuple_filter(bp, filter);
else
rc = bnxt_hwrm_clear_l2_filter(bp, filter);
2018-11-21 08:34:11 +00:00
STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next);
//if (rc)
//break;
}
return rc;
}
static int
bnxt_clear_hwrm_vnic_flows(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter;
struct rte_flow *flow;
int rc = 0;
STAILQ_FOREACH(flow, &vnic->flow_list, next) {
filter = flow->filter;
RTE_LOG(ERR, PMD, "filter type %d\n", filter->filter_type);
if (filter->filter_type == HWRM_CFA_EM_FILTER)
rc = bnxt_hwrm_clear_em_filter(bp, filter);
else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
rc = bnxt_hwrm_clear_ntuple_filter(bp, filter);
else
rc = bnxt_hwrm_clear_l2_filter(bp, filter);
STAILQ_REMOVE(&vnic->flow_list, flow, rte_flow, next);
rte_free(flow);
//if (rc)
//break;
2017-04-21 10:43:26 +00:00
}
return rc;
}
int bnxt_set_hwrm_vnic_filters(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter;
int rc = 0;
STAILQ_FOREACH(filter, &vnic->filter, next) {
if (filter->filter_type == HWRM_CFA_EM_FILTER)
rc = bnxt_hwrm_set_em_filter(bp, filter->dst_id,
filter);
else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
rc = bnxt_hwrm_set_ntuple_filter(bp, filter->dst_id,
filter);
else
rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id,
filter);
2017-04-21 10:43:26 +00:00
if (rc)
break;
}
return rc;
}
void bnxt_free_tunnel_ports(struct bnxt *bp)
{
if (bp->vxlan_port_cnt)
bnxt_hwrm_tunnel_dst_port_free(bp, bp->vxlan_fw_dst_port_id,
HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_VXLAN);
bp->vxlan_port = 0;
if (bp->geneve_port_cnt)
bnxt_hwrm_tunnel_dst_port_free(bp, bp->geneve_fw_dst_port_id,
HWRM_TUNNEL_DST_PORT_FREE_INPUT_TUNNEL_TYPE_GENEVE);
bp->geneve_port = 0;
}
2017-04-21 10:43:26 +00:00
void bnxt_free_all_hwrm_resources(struct bnxt *bp)
{
int i;
2017-04-21 10:43:26 +00:00
if (bp->vnic_info == NULL)
return;
/*
* Cleanup VNICs in reverse order, to make sure the L2 filter
* from vnic0 is last to be cleaned up.
*/
for (i = bp->nr_vnics - 1; i >= 0; i--) {
2017-04-21 10:43:26 +00:00
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
bnxt_clear_hwrm_vnic_flows(bp, vnic);
2017-04-21 10:43:26 +00:00
bnxt_clear_hwrm_vnic_filters(bp, vnic);
bnxt_hwrm_vnic_ctx_free(bp, vnic);
bnxt_hwrm_vnic_tpa_cfg(bp, vnic, false);
2017-04-21 10:43:26 +00:00
bnxt_hwrm_vnic_free(bp, vnic);
2018-11-21 08:34:11 +00:00
rte_free(vnic->fw_grp_ids);
2017-04-21 10:43:26 +00:00
}
/* Ring resources */
bnxt_free_all_hwrm_rings(bp);
bnxt_free_all_hwrm_ring_grps(bp);
bnxt_free_all_hwrm_stat_ctxs(bp);
bnxt_free_tunnel_ports(bp);
2017-04-21 10:43:26 +00:00
}
static uint16_t bnxt_parse_eth_link_duplex(uint32_t conf_link_speed)
{
uint8_t hw_link_duplex = HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_BOTH;
if ((conf_link_speed & ETH_LINK_SPEED_FIXED) == ETH_LINK_SPEED_AUTONEG)
return HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_BOTH;
switch (conf_link_speed) {
case ETH_LINK_SPEED_10M_HD:
case ETH_LINK_SPEED_100M_HD:
return HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_HALF;
}
return hw_link_duplex;
}
static uint16_t bnxt_check_eth_link_autoneg(uint32_t conf_link)
{
return (conf_link & ETH_LINK_SPEED_FIXED) ? 0 : 1;
}
2017-04-21 10:43:26 +00:00
static uint16_t bnxt_parse_eth_link_speed(uint32_t conf_link_speed)
{
uint16_t eth_link_speed = 0;
if (conf_link_speed == ETH_LINK_SPEED_AUTONEG)
2017-04-21 10:43:26 +00:00
return ETH_LINK_SPEED_AUTONEG;
switch (conf_link_speed & ~ETH_LINK_SPEED_FIXED) {
case ETH_LINK_SPEED_100M:
case ETH_LINK_SPEED_100M_HD:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_100MB;
2017-04-21 10:43:26 +00:00
break;
case ETH_LINK_SPEED_1G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_1GB;
2017-04-21 10:43:26 +00:00
break;
case ETH_LINK_SPEED_2_5G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_2_5GB;
2017-04-21 10:43:26 +00:00
break;
case ETH_LINK_SPEED_10G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_FORCE_LINK_SPEED_10GB;
2017-04-21 10:43:26 +00:00
break;
case ETH_LINK_SPEED_20G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_20GB;
2017-04-21 10:43:26 +00:00
break;
case ETH_LINK_SPEED_25G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_25GB;
2017-04-21 10:43:26 +00:00
break;
case ETH_LINK_SPEED_40G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_FORCE_LINK_SPEED_40GB;
2017-04-21 10:43:26 +00:00
break;
case ETH_LINK_SPEED_50G:
eth_link_speed =
HWRM_PORT_PHY_CFG_INPUT_FORCE_LINK_SPEED_50GB;
2017-04-21 10:43:26 +00:00
break;
default:
RTE_LOG(ERR, PMD,
2017-04-21 10:43:26 +00:00
"Unsupported link speed %d; default to AUTO\n",
conf_link_speed);
break;
}
return eth_link_speed;
}
#define BNXT_SUPPORTED_SPEEDS (ETH_LINK_SPEED_100M | ETH_LINK_SPEED_100M_HD | \
ETH_LINK_SPEED_1G | ETH_LINK_SPEED_2_5G | \
ETH_LINK_SPEED_10G | ETH_LINK_SPEED_20G | ETH_LINK_SPEED_25G | \
ETH_LINK_SPEED_40G | ETH_LINK_SPEED_50G)
2017-04-21 10:43:26 +00:00
static int bnxt_valid_link_speed(uint32_t link_speed, uint16_t port_id)
2017-04-21 10:43:26 +00:00
{
uint32_t one_speed;
if (link_speed == ETH_LINK_SPEED_AUTONEG)
return 0;
if (link_speed & ETH_LINK_SPEED_FIXED) {
one_speed = link_speed & ~ETH_LINK_SPEED_FIXED;
if (one_speed & (one_speed - 1)) {
RTE_LOG(ERR, PMD,
2017-04-21 10:43:26 +00:00
"Invalid advertised speeds (%u) for port %u\n",
link_speed, port_id);
return -EINVAL;
}
if ((one_speed & BNXT_SUPPORTED_SPEEDS) != one_speed) {
RTE_LOG(ERR, PMD,
2017-04-21 10:43:26 +00:00
"Unsupported advertised speed (%u) for port %u\n",
link_speed, port_id);
return -EINVAL;
}
} else {
if (!(link_speed & BNXT_SUPPORTED_SPEEDS)) {
RTE_LOG(ERR, PMD,
2017-04-21 10:43:26 +00:00
"Unsupported advertised speeds (%u) for port %u\n",
link_speed, port_id);
return -EINVAL;
}
}
return 0;
}
static uint16_t
bnxt_parse_eth_link_speed_mask(struct bnxt *bp, uint32_t link_speed)
2017-04-21 10:43:26 +00:00
{
uint16_t ret = 0;
if (link_speed == ETH_LINK_SPEED_AUTONEG) {
if (bp->link_info.support_speeds)
return bp->link_info.support_speeds;
2017-04-21 10:43:26 +00:00
link_speed = BNXT_SUPPORTED_SPEEDS;
}
2017-04-21 10:43:26 +00:00
if (link_speed & ETH_LINK_SPEED_100M)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_100MB;
if (link_speed & ETH_LINK_SPEED_100M_HD)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_100MB;
if (link_speed & ETH_LINK_SPEED_1G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_1GB;
if (link_speed & ETH_LINK_SPEED_2_5G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_2_5GB;
if (link_speed & ETH_LINK_SPEED_10G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_10GB;
if (link_speed & ETH_LINK_SPEED_20G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_20GB;
if (link_speed & ETH_LINK_SPEED_25G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_25GB;
if (link_speed & ETH_LINK_SPEED_40G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_40GB;
if (link_speed & ETH_LINK_SPEED_50G)
ret |= HWRM_PORT_PHY_CFG_INPUT_AUTO_LINK_SPEED_MASK_50GB;
return ret;
}
static uint32_t bnxt_parse_hw_link_speed(uint16_t hw_link_speed)
{
uint32_t eth_link_speed = ETH_SPEED_NUM_NONE;
switch (hw_link_speed) {
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_100MB:
eth_link_speed = ETH_SPEED_NUM_100M;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_1GB:
eth_link_speed = ETH_SPEED_NUM_1G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_2_5GB:
eth_link_speed = ETH_SPEED_NUM_2_5G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_10GB:
eth_link_speed = ETH_SPEED_NUM_10G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_20GB:
eth_link_speed = ETH_SPEED_NUM_20G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_25GB:
eth_link_speed = ETH_SPEED_NUM_25G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_40GB:
eth_link_speed = ETH_SPEED_NUM_40G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_50GB:
eth_link_speed = ETH_SPEED_NUM_50G;
break;
case HWRM_PORT_PHY_QCFG_OUTPUT_LINK_SPEED_2GB:
default:
RTE_LOG(ERR, PMD, "HWRM link speed %d not defined\n",
2017-04-21 10:43:26 +00:00
hw_link_speed);
break;
}
return eth_link_speed;
}
static uint16_t bnxt_parse_hw_link_duplex(uint16_t hw_link_duplex)
{
uint16_t eth_link_duplex = ETH_LINK_FULL_DUPLEX;
switch (hw_link_duplex) {
case HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_BOTH:
case HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_FULL:
eth_link_duplex = ETH_LINK_FULL_DUPLEX;
break;
case HWRM_PORT_PHY_CFG_INPUT_AUTO_DUPLEX_HALF:
eth_link_duplex = ETH_LINK_HALF_DUPLEX;
break;
default:
RTE_LOG(ERR, PMD, "HWRM link duplex %d not defined\n",
2017-04-21 10:43:26 +00:00
hw_link_duplex);
break;
}
return eth_link_duplex;
}
int bnxt_get_hwrm_link_config(struct bnxt *bp, struct rte_eth_link *link)
{
int rc = 0;
struct bnxt_link_info *link_info = &bp->link_info;
rc = bnxt_hwrm_port_phy_qcfg(bp, link_info);
if (rc) {
RTE_LOG(ERR, PMD,
2017-04-21 10:43:26 +00:00
"Get link config failed with rc %d\n", rc);
goto exit;
}
if (link_info->link_speed)
2017-04-21 10:43:26 +00:00
link->link_speed =
bnxt_parse_hw_link_speed(link_info->link_speed);
else
link->link_speed = ETH_SPEED_NUM_NONE;
2017-04-21 10:43:26 +00:00
link->link_duplex = bnxt_parse_hw_link_duplex(link_info->duplex);
link->link_status = link_info->link_up;
link->link_autoneg = link_info->auto_mode ==
HWRM_PORT_PHY_QCFG_OUTPUT_AUTO_MODE_NONE ?
ETH_LINK_FIXED : ETH_LINK_AUTONEG;
2017-04-21 10:43:26 +00:00
exit:
return rc;
}
int bnxt_set_hwrm_link_config(struct bnxt *bp, bool link_up)
{
int rc = 0;
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
struct bnxt_link_info link_req;
uint16_t speed, autoneg;
if (BNXT_NPAR_PF(bp) || BNXT_VF(bp))
return 0;
2017-04-21 10:43:26 +00:00
rc = bnxt_valid_link_speed(dev_conf->link_speeds,
bp->eth_dev->data->port_id);
if (rc)
goto error;
memset(&link_req, 0, sizeof(link_req));
link_req.link_up = link_up;
if (!link_up)
goto port_phy_cfg;
autoneg = bnxt_check_eth_link_autoneg(dev_conf->link_speeds);
speed = bnxt_parse_eth_link_speed(dev_conf->link_speeds);
link_req.phy_flags = HWRM_PORT_PHY_CFG_INPUT_FLAGS_RESET_PHY;
/* Autoneg can be done only when the FW allows */
if (autoneg == 1 && !(bp->link_info.auto_link_speed ||
bp->link_info.force_link_speed)) {
link_req.phy_flags |=
2017-04-21 10:43:26 +00:00
HWRM_PORT_PHY_CFG_INPUT_FLAGS_RESTART_AUTONEG;
link_req.auto_link_speed_mask =
bnxt_parse_eth_link_speed_mask(bp,
dev_conf->link_speeds);
2017-04-21 10:43:26 +00:00
} else {
if (bp->link_info.phy_type ==
HWRM_PORT_PHY_QCFG_OUTPUT_PHY_TYPE_BASET ||
bp->link_info.phy_type ==
HWRM_PORT_PHY_QCFG_OUTPUT_PHY_TYPE_BASETE ||
bp->link_info.media_type ==
HWRM_PORT_PHY_QCFG_OUTPUT_MEDIA_TYPE_TP) {
RTE_LOG(ERR, PMD, "10GBase-T devices must autoneg\n");
return -EINVAL;
}
link_req.phy_flags |= HWRM_PORT_PHY_CFG_INPUT_FLAGS_FORCE;
/* If user wants a particular speed try that first. */
if (speed)
link_req.link_speed = speed;
else if (bp->link_info.force_link_speed)
link_req.link_speed = bp->link_info.force_link_speed;
else
link_req.link_speed = bp->link_info.auto_link_speed;
2017-04-21 10:43:26 +00:00
}
link_req.duplex = bnxt_parse_eth_link_duplex(dev_conf->link_speeds);
link_req.auto_pause = bp->link_info.auto_pause;
link_req.force_pause = bp->link_info.force_pause;
port_phy_cfg:
2017-04-21 10:43:26 +00:00
rc = bnxt_hwrm_port_phy_cfg(bp, &link_req);
if (rc) {
RTE_LOG(ERR, PMD,
2017-04-21 10:43:26 +00:00
"Set link config failed with rc %d\n", rc);
}
error:
return rc;
}
/* JIRA 22088 */
int bnxt_hwrm_func_qcfg(struct bnxt *bp)
{
struct hwrm_func_qcfg_input req = {0};
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, FUNC_QCFG);
req.fid = rte_cpu_to_le_16(0xffff);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
/* Hard Coded.. 0xfff VLAN ID mask */
bp->vlan = rte_le_to_cpu_16(resp->vlan) & 0xfff;
switch (resp->port_partition_type) {
case HWRM_FUNC_QCFG_OUTPUT_PORT_PARTITION_TYPE_NPAR1_0:
case HWRM_FUNC_QCFG_OUTPUT_PORT_PARTITION_TYPE_NPAR1_5:
case HWRM_FUNC_QCFG_OUTPUT_PORT_PARTITION_TYPE_NPAR2_0:
bp->port_partition_type = resp->port_partition_type;
break;
default:
bp->port_partition_type = 0;
break;
}
HWRM_UNLOCK();
return rc;
}
static void copy_func_cfg_to_qcaps(struct hwrm_func_cfg_input *fcfg,
struct hwrm_func_qcaps_output *qcaps)
{
qcaps->max_rsscos_ctx = fcfg->num_rsscos_ctxs;
memcpy(qcaps->mac_address, fcfg->dflt_mac_addr,
sizeof(qcaps->mac_address));
qcaps->max_l2_ctxs = fcfg->num_l2_ctxs;
qcaps->max_rx_rings = fcfg->num_rx_rings;
qcaps->max_tx_rings = fcfg->num_tx_rings;
qcaps->max_cmpl_rings = fcfg->num_cmpl_rings;
qcaps->max_stat_ctx = fcfg->num_stat_ctxs;
qcaps->max_vfs = 0;
qcaps->first_vf_id = 0;
qcaps->max_vnics = fcfg->num_vnics;
qcaps->max_decap_records = 0;
qcaps->max_encap_records = 0;
qcaps->max_tx_wm_flows = 0;
qcaps->max_tx_em_flows = 0;
qcaps->max_rx_wm_flows = 0;
qcaps->max_rx_em_flows = 0;
qcaps->max_flow_id = 0;
qcaps->max_mcast_filters = fcfg->num_mcast_filters;
qcaps->max_sp_tx_rings = 0;
qcaps->max_hw_ring_grps = fcfg->num_hw_ring_grps;
}
static int bnxt_hwrm_pf_func_cfg(struct bnxt *bp, int tx_rings)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
req.enables = rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_MTU |
HWRM_FUNC_CFG_INPUT_ENABLES_MRU |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_RSSCOS_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_STAT_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_CMPL_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_TX_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_RX_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_L2_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_VNICS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_HW_RING_GRPS);
req.flags = rte_cpu_to_le_32(bp->pf.func_cfg_flags);
req.mtu = rte_cpu_to_le_16(BNXT_MAX_MTU);
req.mru = rte_cpu_to_le_16(bp->eth_dev->data->mtu + ETHER_HDR_LEN +
ETHER_CRC_LEN + VLAN_TAG_SIZE);
req.num_rsscos_ctxs = rte_cpu_to_le_16(bp->max_rsscos_ctx);
req.num_stat_ctxs = rte_cpu_to_le_16(bp->max_stat_ctx);
req.num_cmpl_rings = rte_cpu_to_le_16(bp->max_cp_rings);
req.num_tx_rings = rte_cpu_to_le_16(tx_rings);
req.num_rx_rings = rte_cpu_to_le_16(bp->max_rx_rings);
req.num_l2_ctxs = rte_cpu_to_le_16(bp->max_l2_ctx);
req.num_vnics = rte_cpu_to_le_16(bp->max_vnics);
req.num_hw_ring_grps = rte_cpu_to_le_16(bp->max_ring_grps);
req.fid = rte_cpu_to_le_16(0xffff);
HWRM_PREP(req, FUNC_CFG);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
static void populate_vf_func_cfg_req(struct bnxt *bp,
struct hwrm_func_cfg_input *req,
int num_vfs)
{
req->enables = rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_MTU |
HWRM_FUNC_CFG_INPUT_ENABLES_MRU |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_RSSCOS_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_STAT_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_CMPL_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_TX_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_RX_RINGS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_L2_CTXS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_VNICS |
HWRM_FUNC_CFG_INPUT_ENABLES_NUM_HW_RING_GRPS);
req->mtu = rte_cpu_to_le_16(bp->eth_dev->data->mtu + ETHER_HDR_LEN +
ETHER_CRC_LEN + VLAN_TAG_SIZE);
req->mru = rte_cpu_to_le_16(bp->eth_dev->data->mtu + ETHER_HDR_LEN +
ETHER_CRC_LEN + VLAN_TAG_SIZE);
req->num_rsscos_ctxs = rte_cpu_to_le_16(bp->max_rsscos_ctx /
(num_vfs + 1));
req->num_stat_ctxs = rte_cpu_to_le_16(bp->max_stat_ctx / (num_vfs + 1));
req->num_cmpl_rings = rte_cpu_to_le_16(bp->max_cp_rings /
(num_vfs + 1));
req->num_tx_rings = rte_cpu_to_le_16(bp->max_tx_rings / (num_vfs + 1));
req->num_rx_rings = rte_cpu_to_le_16(bp->max_rx_rings / (num_vfs + 1));
req->num_l2_ctxs = rte_cpu_to_le_16(bp->max_l2_ctx / (num_vfs + 1));
/* TODO: For now, do not support VMDq/RFS on VFs. */
req->num_vnics = rte_cpu_to_le_16(1);
req->num_hw_ring_grps = rte_cpu_to_le_16(bp->max_ring_grps /
(num_vfs + 1));
}
static void add_random_mac_if_needed(struct bnxt *bp,
struct hwrm_func_cfg_input *cfg_req,
int vf)
{
struct ether_addr mac;
if (bnxt_hwrm_func_qcfg_vf_default_mac(bp, vf, &mac))
return;
if (memcmp(mac.addr_bytes, "\x00\x00\x00\x00\x00", 6) == 0) {
cfg_req->enables |=
rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_DFLT_MAC_ADDR);
eth_random_addr(cfg_req->dflt_mac_addr);
bp->pf.vf_info[vf].random_mac = true;
} else {
memcpy(cfg_req->dflt_mac_addr, mac.addr_bytes, ETHER_ADDR_LEN);
}
}
static void reserve_resources_from_vf(struct bnxt *bp,
struct hwrm_func_cfg_input *cfg_req,
int vf)
{
struct hwrm_func_qcaps_input req = {0};
struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
/* Get the actual allocated values now */
HWRM_PREP(req, FUNC_QCAPS);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
if (rc) {
RTE_LOG(ERR, PMD, "hwrm_func_qcaps failed rc:%d\n", rc);
copy_func_cfg_to_qcaps(cfg_req, resp);
} else if (resp->error_code) {
rc = rte_le_to_cpu_16(resp->error_code);
RTE_LOG(ERR, PMD, "hwrm_func_qcaps error %d\n", rc);
copy_func_cfg_to_qcaps(cfg_req, resp);
}
bp->max_rsscos_ctx -= rte_le_to_cpu_16(resp->max_rsscos_ctx);
bp->max_stat_ctx -= rte_le_to_cpu_16(resp->max_stat_ctx);
bp->max_cp_rings -= rte_le_to_cpu_16(resp->max_cmpl_rings);
bp->max_tx_rings -= rte_le_to_cpu_16(resp->max_tx_rings);
bp->max_rx_rings -= rte_le_to_cpu_16(resp->max_rx_rings);
bp->max_l2_ctx -= rte_le_to_cpu_16(resp->max_l2_ctxs);
/*
* TODO: While not supporting VMDq with VFs, max_vnics is always
* forced to 1 in this case
*/
//bp->max_vnics -= rte_le_to_cpu_16(esp->max_vnics);
bp->max_ring_grps -= rte_le_to_cpu_16(resp->max_hw_ring_grps);
HWRM_UNLOCK();
}
int bnxt_hwrm_func_qcfg_current_vf_vlan(struct bnxt *bp, int vf)
{
struct hwrm_func_qcfg_input req = {0};
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
/* Check for zero MAC address */
HWRM_PREP(req, FUNC_QCFG);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
if (rc) {
RTE_LOG(ERR, PMD, "hwrm_func_qcfg failed rc:%d\n", rc);
return -1;
} else if (resp->error_code) {
rc = rte_le_to_cpu_16(resp->error_code);
RTE_LOG(ERR, PMD, "hwrm_func_qcfg error %d\n", rc);
return -1;
}
rc = rte_le_to_cpu_16(resp->vlan);
HWRM_UNLOCK();
return rc;
}
static int update_pf_resource_max(struct bnxt *bp)
{
struct hwrm_func_qcfg_input req = {0};
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
/* And copy the allocated numbers into the pf struct */
HWRM_PREP(req, FUNC_QCFG);
req.fid = rte_cpu_to_le_16(0xffff);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
/* Only TX ring value reflects actual allocation? TODO */
bp->max_tx_rings = rte_le_to_cpu_16(resp->alloc_tx_rings);
bp->pf.evb_mode = resp->evb_mode;
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_allocate_pf_only(struct bnxt *bp)
{
int rc;
if (!BNXT_PF(bp)) {
RTE_LOG(ERR, PMD, "Attempt to allcoate VFs on a VF!\n");
return -1;
}
rc = bnxt_hwrm_func_qcaps(bp);
if (rc)
return rc;
bp->pf.func_cfg_flags &=
~(HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_ENABLE |
HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_DISABLE);
bp->pf.func_cfg_flags |=
HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_DISABLE;
rc = bnxt_hwrm_pf_func_cfg(bp, bp->max_tx_rings);
return rc;
}
int bnxt_hwrm_allocate_vfs(struct bnxt *bp, int num_vfs)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
int i;
size_t sz;
int rc = 0;
size_t req_buf_sz;
if (!BNXT_PF(bp)) {
RTE_LOG(ERR, PMD, "Attempt to allcoate VFs on a VF!\n");
return -1;
}
rc = bnxt_hwrm_func_qcaps(bp);
if (rc)
return rc;
bp->pf.active_vfs = num_vfs;
/*
* First, configure the PF to only use one TX ring. This ensures that
* there are enough rings for all VFs.
*
* If we don't do this, when we call func_alloc() later, we will lock
* extra rings to the PF that won't be available during func_cfg() of
* the VFs.
*
* This has been fixed with firmware versions above 20.6.54
*/
bp->pf.func_cfg_flags &=
~(HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_ENABLE |
HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_DISABLE);
bp->pf.func_cfg_flags |=
HWRM_FUNC_CFG_INPUT_FLAGS_STD_TX_RING_MODE_ENABLE;
rc = bnxt_hwrm_pf_func_cfg(bp, 1);
if (rc)
return rc;
/*
* Now, create and register a buffer to hold forwarded VF requests
*/
req_buf_sz = num_vfs * HWRM_MAX_REQ_LEN;
bp->pf.vf_req_buf = rte_malloc("bnxt_vf_fwd", req_buf_sz,
page_roundup(num_vfs * HWRM_MAX_REQ_LEN));
if (bp->pf.vf_req_buf == NULL) {
rc = -ENOMEM;
goto error_free;
}
for (sz = 0; sz < req_buf_sz; sz += getpagesize())
rte_mem_lock_page(((char *)bp->pf.vf_req_buf) + sz);
for (i = 0; i < num_vfs; i++)
bp->pf.vf_info[i].req_buf = ((char *)bp->pf.vf_req_buf) +
(i * HWRM_MAX_REQ_LEN);
rc = bnxt_hwrm_func_buf_rgtr(bp);
if (rc)
goto error_free;
populate_vf_func_cfg_req(bp, &req, num_vfs);
bp->pf.active_vfs = 0;
for (i = 0; i < num_vfs; i++) {
add_random_mac_if_needed(bp, &req, i);
HWRM_PREP(req, FUNC_CFG);
req.flags = rte_cpu_to_le_32(bp->pf.vf_info[i].func_cfg_flags);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[i].fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
/* Clear enable flag for next pass */
req.enables &= ~rte_cpu_to_le_32(
HWRM_FUNC_CFG_INPUT_ENABLES_DFLT_MAC_ADDR);
if (rc || resp->error_code) {
RTE_LOG(ERR, PMD,
"Failed to initizlie VF %d\n", i);
RTE_LOG(ERR, PMD,
"Not all VFs available. (%d, %d)\n",
rc, resp->error_code);
HWRM_UNLOCK();
break;
}
HWRM_UNLOCK();
reserve_resources_from_vf(bp, &req, i);
bp->pf.active_vfs++;
bnxt_hwrm_func_clr_stats(bp, bp->pf.vf_info[i].fid);
}
/*
* Now configure the PF to use "the rest" of the resources
* We're using STD_TX_RING_MODE here though which will limit the TX
* rings. This will allow QoS to function properly. Not setting this
* will cause PF rings to break bandwidth settings.
*/
rc = bnxt_hwrm_pf_func_cfg(bp, bp->max_tx_rings);
if (rc)
goto error_free;
rc = update_pf_resource_max(bp);
if (rc)
goto error_free;
return rc;
error_free:
bnxt_hwrm_func_buf_unrgtr(bp);
return rc;
}
int bnxt_hwrm_pf_evb_mode(struct bnxt *bp)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
HWRM_PREP(req, FUNC_CFG);
req.fid = rte_cpu_to_le_16(0xffff);
req.enables = rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_EVB_MODE);
req.evb_mode = bp->pf.evb_mode;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, uint16_t port,
uint8_t tunnel_type)
{
struct hwrm_tunnel_dst_port_alloc_input req = {0};
struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, TUNNEL_DST_PORT_ALLOC);
req.tunnel_type = tunnel_type;
req.tunnel_dst_port_val = port;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
switch (tunnel_type) {
case HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_VXLAN:
bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
bp->vxlan_port = port;
break;
case HWRM_TUNNEL_DST_PORT_ALLOC_INPUT_TUNNEL_TYPE_GENEVE:
bp->geneve_fw_dst_port_id = resp->tunnel_dst_port_id;
bp->geneve_port = port;
break;
default:
break;
}
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, uint16_t port,
uint8_t tunnel_type)
{
struct hwrm_tunnel_dst_port_free_input req = {0};
struct hwrm_tunnel_dst_port_free_output *resp = bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, TUNNEL_DST_PORT_FREE);
req.tunnel_type = tunnel_type;
req.tunnel_dst_port_id = rte_cpu_to_be_16(port);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_cfg_vf_set_flags(struct bnxt *bp, uint16_t vf,
uint32_t flags)
{
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_cfg_input req = {0};
int rc;
HWRM_PREP(req, FUNC_CFG);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
req.flags = rte_cpu_to_le_32(flags);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
void vf_vnic_set_rxmask_cb(struct bnxt_vnic_info *vnic, void *flagp)
{
uint32_t *flag = flagp;
vnic->flags = *flag;
}
int bnxt_set_rx_mask_no_vlan(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
return bnxt_hwrm_cfa_l2_set_rx_mask(bp, vnic, 0, NULL);
}
int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
{
int rc = 0;
struct hwrm_func_buf_rgtr_input req = {.req_type = 0 };
struct hwrm_func_buf_rgtr_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_BUF_RGTR);
req.req_buf_num_pages = rte_cpu_to_le_16(1);
req.req_buf_page_size = rte_cpu_to_le_16(
page_getenum(bp->pf.active_vfs * HWRM_MAX_REQ_LEN));
req.req_buf_len = rte_cpu_to_le_16(HWRM_MAX_REQ_LEN);
req.req_buf_page_addr[0] =
rte_cpu_to_le_64(rte_mem_virt2iova(bp->pf.vf_req_buf));
if (req.req_buf_page_addr[0] == 0) {
RTE_LOG(ERR, PMD,
"unable to map buffer address to physical memory\n");
return -ENOMEM;
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_buf_unrgtr(struct bnxt *bp)
{
int rc = 0;
struct hwrm_func_buf_unrgtr_input req = {.req_type = 0 };
struct hwrm_func_buf_unrgtr_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, FUNC_BUF_UNRGTR);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_cfg_def_cp(struct bnxt *bp)
{
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_cfg_input req = {0};
int rc;
HWRM_PREP(req, FUNC_CFG);
req.fid = rte_cpu_to_le_16(0xffff);
req.flags = rte_cpu_to_le_32(bp->pf.func_cfg_flags);
req.enables = rte_cpu_to_le_32(
HWRM_FUNC_CFG_INPUT_ENABLES_ASYNC_EVENT_CR);
req.async_event_cr = rte_cpu_to_le_16(
bp->def_cp_ring->cp_ring_struct->fw_ring_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_vf_func_cfg_def_cp(struct bnxt *bp)
{
struct hwrm_func_vf_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_vf_cfg_input req = {0};
int rc;
HWRM_PREP(req, FUNC_VF_CFG);
req.enables = rte_cpu_to_le_32(
HWRM_FUNC_CFG_INPUT_ENABLES_ASYNC_EVENT_CR);
req.async_event_cr = rte_cpu_to_le_16(
bp->def_cp_ring->cp_ring_struct->fw_ring_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_set_default_vlan(struct bnxt *bp, int vf, uint8_t is_vf)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint16_t dflt_vlan, fid;
uint32_t func_cfg_flags;
int rc = 0;
HWRM_PREP(req, FUNC_CFG);
if (is_vf) {
dflt_vlan = bp->pf.vf_info[vf].dflt_vlan;
fid = bp->pf.vf_info[vf].fid;
func_cfg_flags = bp->pf.vf_info[vf].func_cfg_flags;
} else {
fid = rte_cpu_to_le_16(0xffff);
func_cfg_flags = bp->pf.func_cfg_flags;
dflt_vlan = bp->vlan;
}
req.flags = rte_cpu_to_le_32(func_cfg_flags);
req.fid = rte_cpu_to_le_16(fid);
req.enables |= rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_DFLT_VLAN);
req.dflt_vlan = rte_cpu_to_le_16(dflt_vlan);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_bw_cfg(struct bnxt *bp, uint16_t vf,
uint16_t max_bw, uint16_t enables)
{
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_cfg_input req = {0};
int rc;
HWRM_PREP(req, FUNC_CFG);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
req.enables |= rte_cpu_to_le_32(enables);
req.flags = rte_cpu_to_le_32(bp->pf.vf_info[vf].func_cfg_flags);
req.max_bw = rte_cpu_to_le_32(max_bw);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_set_vf_vlan(struct bnxt *bp, int vf)
{
struct hwrm_func_cfg_input req = {0};
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc = 0;
HWRM_PREP(req, FUNC_CFG);
req.flags = rte_cpu_to_le_32(bp->pf.vf_info[vf].func_cfg_flags);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
req.enables |= rte_cpu_to_le_32(HWRM_FUNC_CFG_INPUT_ENABLES_DFLT_VLAN);
req.dflt_vlan = rte_cpu_to_le_16(bp->pf.vf_info[vf].dflt_vlan);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_reject_fwd_resp(struct bnxt *bp, uint16_t target_id,
void *encaped, size_t ec_size)
{
int rc = 0;
struct hwrm_reject_fwd_resp_input req = {.req_type = 0};
struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
if (ec_size > sizeof(req.encap_request))
return -1;
HWRM_PREP(req, REJECT_FWD_RESP);
req.encap_resp_target_id = rte_cpu_to_le_16(target_id);
memcpy(req.encap_request, encaped, ec_size);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_qcfg_vf_default_mac(struct bnxt *bp, uint16_t vf,
struct ether_addr *mac)
{
struct hwrm_func_qcfg_input req = {0};
struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
int rc;
HWRM_PREP(req, FUNC_QCFG);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
memcpy(mac->addr_bytes, resp->mac_address, ETHER_ADDR_LEN);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, uint16_t target_id,
void *encaped, size_t ec_size)
{
int rc = 0;
struct hwrm_exec_fwd_resp_input req = {.req_type = 0};
struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr;
if (ec_size > sizeof(req.encap_request))
return -1;
HWRM_PREP(req, EXEC_FWD_RESP);
req.encap_resp_target_id = rte_cpu_to_le_16(target_id);
memcpy(req.encap_request, encaped, ec_size);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_ctx_qstats(struct bnxt *bp, uint32_t cid, int idx,
struct rte_eth_stats *stats, uint8_t rx)
{
int rc = 0;
struct hwrm_stat_ctx_query_input req = {.req_type = 0};
struct hwrm_stat_ctx_query_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, STAT_CTX_QUERY);
req.stat_ctx_id = rte_cpu_to_le_32(cid);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
if (rx) {
stats->q_ipackets[idx] = rte_le_to_cpu_64(resp->rx_ucast_pkts);
stats->q_ipackets[idx] += rte_le_to_cpu_64(resp->rx_mcast_pkts);
stats->q_ipackets[idx] += rte_le_to_cpu_64(resp->rx_bcast_pkts);
stats->q_ibytes[idx] = rte_le_to_cpu_64(resp->rx_ucast_bytes);
stats->q_ibytes[idx] += rte_le_to_cpu_64(resp->rx_mcast_bytes);
stats->q_ibytes[idx] += rte_le_to_cpu_64(resp->rx_bcast_bytes);
stats->q_errors[idx] = rte_le_to_cpu_64(resp->rx_err_pkts);
stats->q_errors[idx] += rte_le_to_cpu_64(resp->rx_drop_pkts);
} else {
stats->q_opackets[idx] = rte_le_to_cpu_64(resp->tx_ucast_pkts);
stats->q_opackets[idx] += rte_le_to_cpu_64(resp->tx_mcast_pkts);
stats->q_opackets[idx] += rte_le_to_cpu_64(resp->tx_bcast_pkts);
stats->q_obytes[idx] = rte_le_to_cpu_64(resp->tx_ucast_bytes);
stats->q_obytes[idx] += rte_le_to_cpu_64(resp->tx_mcast_bytes);
stats->q_obytes[idx] += rte_le_to_cpu_64(resp->tx_bcast_bytes);
stats->q_errors[idx] += rte_le_to_cpu_64(resp->tx_err_pkts);
}
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_port_qstats(struct bnxt *bp)
{
struct hwrm_port_qstats_input req = {0};
struct hwrm_port_qstats_output *resp = bp->hwrm_cmd_resp_addr;
struct bnxt_pf_info *pf = &bp->pf;
int rc;
if (!(bp->flags & BNXT_FLAG_PORT_STATS))
return 0;
HWRM_PREP(req, PORT_QSTATS);
req.port_id = rte_cpu_to_le_16(pf->port_id);
req.tx_stat_host_addr = rte_cpu_to_le_64(bp->hw_tx_port_stats_map);
req.rx_stat_host_addr = rte_cpu_to_le_64(bp->hw_rx_port_stats_map);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_port_clr_stats(struct bnxt *bp)
{
struct hwrm_port_clr_stats_input req = {0};
struct hwrm_port_clr_stats_output *resp = bp->hwrm_cmd_resp_addr;
struct bnxt_pf_info *pf = &bp->pf;
int rc;
if (!(bp->flags & BNXT_FLAG_PORT_STATS))
return 0;
HWRM_PREP(req, PORT_CLR_STATS);
req.port_id = rte_cpu_to_le_16(pf->port_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
{
struct hwrm_port_led_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_port_led_qcaps_input req = {0};
int rc;
if (BNXT_VF(bp))
return 0;
HWRM_PREP(req, PORT_LED_QCAPS);
req.port_id = bp->pf.port_id;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
unsigned int i;
bp->num_leds = resp->num_leds;
memcpy(bp->leds, &resp->led0_id,
sizeof(bp->leds[0]) * bp->num_leds);
for (i = 0; i < bp->num_leds; i++) {
struct bnxt_led_info *led = &bp->leds[i];
uint16_t caps = led->led_state_caps;
if (!led->led_group_id ||
!BNXT_LED_ALT_BLINK_CAP(caps)) {
bp->num_leds = 0;
break;
}
}
}
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_port_led_cfg(struct bnxt *bp, bool led_on)
{
struct hwrm_port_led_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_port_led_cfg_input req = {0};
struct bnxt_led_cfg *led_cfg;
uint8_t led_state = HWRM_PORT_LED_QCFG_OUTPUT_LED0_STATE_DEFAULT;
uint16_t duration = 0;
int rc, i;
if (!bp->num_leds || BNXT_VF(bp))
return -EOPNOTSUPP;
HWRM_PREP(req, PORT_LED_CFG);
if (led_on) {
led_state = HWRM_PORT_LED_CFG_INPUT_LED0_STATE_BLINKALT;
duration = rte_cpu_to_le_16(500);
}
req.port_id = bp->pf.port_id;
req.num_leds = bp->num_leds;
led_cfg = (struct bnxt_led_cfg *)&req.led0_id;
for (i = 0; i < bp->num_leds; i++, led_cfg++) {
req.enables |= BNXT_LED_DFLT_ENABLES(i);
led_cfg->led_id = bp->leds[i].led_id;
led_cfg->led_state = led_state;
led_cfg->led_blink_on = duration;
led_cfg->led_blink_off = duration;
led_cfg->led_group_id = bp->leds[i].led_group_id;
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_nvm_get_dir_info(struct bnxt *bp, uint32_t *entries,
uint32_t *length)
{
int rc;
struct hwrm_nvm_get_dir_info_input req = {0};
struct hwrm_nvm_get_dir_info_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, NVM_GET_DIR_INFO);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
if (!rc) {
*entries = rte_le_to_cpu_32(resp->entries);
*length = rte_le_to_cpu_32(resp->entry_length);
}
return rc;
}
int bnxt_get_nvram_directory(struct bnxt *bp, uint32_t len, uint8_t *data)
{
int rc;
uint32_t dir_entries;
uint32_t entry_length;
uint8_t *buf;
size_t buflen;
rte_iova_t dma_handle;
struct hwrm_nvm_get_dir_entries_input req = {0};
struct hwrm_nvm_get_dir_entries_output *resp = bp->hwrm_cmd_resp_addr;
rc = bnxt_hwrm_nvm_get_dir_info(bp, &dir_entries, &entry_length);
if (rc != 0)
return rc;
*data++ = dir_entries;
*data++ = entry_length;
len -= 2;
memset(data, 0xff, len);
buflen = dir_entries * entry_length;
buf = rte_malloc("nvm_dir", buflen, 0);
rte_mem_lock_page(buf);
if (buf == NULL)
return -ENOMEM;
dma_handle = rte_mem_virt2iova(buf);
if (dma_handle == 0) {
RTE_LOG(ERR, PMD,
"unable to map response address to physical memory\n");
return -ENOMEM;
}
HWRM_PREP(req, NVM_GET_DIR_ENTRIES);
req.host_dest_addr = rte_cpu_to_le_64(dma_handle);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
if (rc == 0)
memcpy(data, buf, len > buflen ? buflen : len);
rte_free(buf);
2018-11-21 08:34:11 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_get_nvram_item(struct bnxt *bp, uint32_t index,
uint32_t offset, uint32_t length,
uint8_t *data)
{
int rc;
uint8_t *buf;
rte_iova_t dma_handle;
struct hwrm_nvm_read_input req = {0};
struct hwrm_nvm_read_output *resp = bp->hwrm_cmd_resp_addr;
buf = rte_malloc("nvm_item", length, 0);
rte_mem_lock_page(buf);
if (!buf)
return -ENOMEM;
dma_handle = rte_mem_virt2iova(buf);
if (dma_handle == 0) {
RTE_LOG(ERR, PMD,
"unable to map response address to physical memory\n");
return -ENOMEM;
}
HWRM_PREP(req, NVM_READ);
req.host_dest_addr = rte_cpu_to_le_64(dma_handle);
req.dir_idx = rte_cpu_to_le_16(index);
req.offset = rte_cpu_to_le_32(offset);
req.len = rte_cpu_to_le_32(length);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
if (rc == 0)
memcpy(data, buf, length);
rte_free(buf);
2018-11-21 08:34:11 +00:00
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_erase_nvram_directory(struct bnxt *bp, uint8_t index)
{
int rc;
struct hwrm_nvm_erase_dir_entry_input req = {0};
struct hwrm_nvm_erase_dir_entry_output *resp = bp->hwrm_cmd_resp_addr;
HWRM_PREP(req, NVM_ERASE_DIR_ENTRY);
req.dir_idx = rte_cpu_to_le_16(index);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_flash_nvram(struct bnxt *bp, uint16_t dir_type,
uint16_t dir_ordinal, uint16_t dir_ext,
uint16_t dir_attr, const uint8_t *data,
size_t data_len)
{
int rc;
struct hwrm_nvm_write_input req = {0};
struct hwrm_nvm_write_output *resp = bp->hwrm_cmd_resp_addr;
rte_iova_t dma_handle;
uint8_t *buf;
buf = rte_malloc("nvm_write", data_len, 0);
rte_mem_lock_page(buf);
if (!buf)
return -ENOMEM;
dma_handle = rte_mem_virt2iova(buf);
if (dma_handle == 0) {
RTE_LOG(ERR, PMD,
"unable to map response address to physical memory\n");
return -ENOMEM;
}
memcpy(buf, data, data_len);
2018-11-21 08:34:11 +00:00
HWRM_PREP(req, NVM_WRITE);
2018-11-21 08:34:11 +00:00
req.dir_type = rte_cpu_to_le_16(dir_type);
req.dir_ordinal = rte_cpu_to_le_16(dir_ordinal);
req.dir_ext = rte_cpu_to_le_16(dir_ext);
req.dir_attr = rte_cpu_to_le_16(dir_attr);
req.dir_data_length = rte_cpu_to_le_32(data_len);
req.host_src_addr = rte_cpu_to_le_64(dma_handle);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
2018-11-21 08:34:11 +00:00
rte_free(buf);
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
static void
bnxt_vnic_count(struct bnxt_vnic_info *vnic __rte_unused, void *cbdata)
{
uint32_t *count = cbdata;
*count = *count + 1;
}
static int bnxt_vnic_count_hwrm_stub(struct bnxt *bp __rte_unused,
struct bnxt_vnic_info *vnic __rte_unused)
{
return 0;
}
int bnxt_vf_vnic_count(struct bnxt *bp, uint16_t vf)
{
uint32_t count = 0;
bnxt_hwrm_func_vf_vnic_query_and_config(bp, vf, bnxt_vnic_count,
&count, bnxt_vnic_count_hwrm_stub);
return count;
}
static int bnxt_hwrm_func_vf_vnic_query(struct bnxt *bp, uint16_t vf,
uint16_t *vnic_ids)
{
struct hwrm_func_vf_vnic_ids_query_input req = {0};
struct hwrm_func_vf_vnic_ids_query_output *resp =
bp->hwrm_cmd_resp_addr;
int rc;
/* First query all VNIC ids */
HWRM_PREP(req, FUNC_VF_VNIC_IDS_QUERY);
req.vf_id = rte_cpu_to_le_16(bp->pf.first_vf_id + vf);
req.max_vnic_id_cnt = rte_cpu_to_le_32(bp->pf.total_vnics);
req.vnic_id_tbl_addr = rte_cpu_to_le_64(rte_mem_virt2iova(vnic_ids));
if (req.vnic_id_tbl_addr == 0) {
HWRM_UNLOCK();
RTE_LOG(ERR, PMD,
"unable to map VNIC ID table address to physical memory\n");
return -ENOMEM;
}
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
if (rc) {
HWRM_UNLOCK();
RTE_LOG(ERR, PMD, "hwrm_func_vf_vnic_query failed rc:%d\n", rc);
return -1;
} else if (resp->error_code) {
rc = rte_le_to_cpu_16(resp->error_code);
HWRM_UNLOCK();
RTE_LOG(ERR, PMD, "hwrm_func_vf_vnic_query error %d\n", rc);
return -1;
}
rc = rte_le_to_cpu_32(resp->vnic_id_cnt);
HWRM_UNLOCK();
return rc;
}
/*
* This function queries the VNIC IDs for a specified VF. It then calls
* the vnic_cb to update the necessary field in vnic_info with cbdata.
* Then it calls the hwrm_cb function to program this new vnic configuration.
*/
int bnxt_hwrm_func_vf_vnic_query_and_config(struct bnxt *bp, uint16_t vf,
void (*vnic_cb)(struct bnxt_vnic_info *, void *), void *cbdata,
int (*hwrm_cb)(struct bnxt *bp, struct bnxt_vnic_info *vnic))
{
struct bnxt_vnic_info vnic;
int rc = 0;
int i, num_vnic_ids;
uint16_t *vnic_ids;
size_t vnic_id_sz;
size_t sz;
/* First query all VNIC ids */
vnic_id_sz = bp->pf.total_vnics * sizeof(*vnic_ids);
vnic_ids = rte_malloc("bnxt_hwrm_vf_vnic_ids_query", vnic_id_sz,
RTE_CACHE_LINE_SIZE);
if (vnic_ids == NULL) {
rc = -ENOMEM;
return rc;
}
for (sz = 0; sz < vnic_id_sz; sz += getpagesize())
rte_mem_lock_page(((char *)vnic_ids) + sz);
num_vnic_ids = bnxt_hwrm_func_vf_vnic_query(bp, vf, vnic_ids);
if (num_vnic_ids < 0)
return num_vnic_ids;
/* Retrieve VNIC, update bd_stall then update */
for (i = 0; i < num_vnic_ids; i++) {
memset(&vnic, 0, sizeof(struct bnxt_vnic_info));
vnic.fw_vnic_id = rte_le_to_cpu_16(vnic_ids[i]);
rc = bnxt_hwrm_vnic_qcfg(bp, &vnic, bp->pf.first_vf_id + vf);
if (rc)
break;
if (vnic.mru <= 4) /* Indicates unallocated */
continue;
vnic_cb(&vnic, cbdata);
rc = hwrm_cb(bp, &vnic);
if (rc)
break;
}
rte_free(vnic_ids);
return rc;
}
int bnxt_hwrm_func_cfg_vf_set_vlan_anti_spoof(struct bnxt *bp, uint16_t vf,
bool on)
{
struct hwrm_func_cfg_output *resp = bp->hwrm_cmd_resp_addr;
struct hwrm_func_cfg_input req = {0};
int rc;
HWRM_PREP(req, FUNC_CFG);
req.fid = rte_cpu_to_le_16(bp->pf.vf_info[vf].fid);
req.enables |= rte_cpu_to_le_32(
HWRM_FUNC_CFG_INPUT_ENABLES_VLAN_ANTISPOOF_MODE);
req.vlan_antispoof_mode = on ?
HWRM_FUNC_CFG_INPUT_VLAN_ANTISPOOF_MODE_VALIDATE_VLAN :
HWRM_FUNC_CFG_INPUT_VLAN_ANTISPOOF_MODE_NOCHECK;
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(struct bnxt *bp, int vf)
{
struct bnxt_vnic_info vnic;
uint16_t *vnic_ids;
size_t vnic_id_sz;
int num_vnic_ids, i;
size_t sz;
int rc;
vnic_id_sz = bp->pf.total_vnics * sizeof(*vnic_ids);
vnic_ids = rte_malloc("bnxt_hwrm_vf_vnic_ids_query", vnic_id_sz,
RTE_CACHE_LINE_SIZE);
if (vnic_ids == NULL) {
rc = -ENOMEM;
return rc;
}
for (sz = 0; sz < vnic_id_sz; sz += getpagesize())
rte_mem_lock_page(((char *)vnic_ids) + sz);
rc = bnxt_hwrm_func_vf_vnic_query(bp, vf, vnic_ids);
if (rc <= 0)
goto exit;
num_vnic_ids = rc;
/*
* Loop through to find the default VNIC ID.
* TODO: The easier way would be to obtain the resp->dflt_vnic_id
* by sending the hwrm_func_qcfg command to the firmware.
*/
for (i = 0; i < num_vnic_ids; i++) {
memset(&vnic, 0, sizeof(struct bnxt_vnic_info));
vnic.fw_vnic_id = rte_le_to_cpu_16(vnic_ids[i]);
rc = bnxt_hwrm_vnic_qcfg(bp, &vnic,
bp->pf.first_vf_id + vf);
if (rc)
goto exit;
if (vnic.func_default) {
rte_free(vnic_ids);
return vnic.fw_vnic_id;
}
}
/* Could not find a default VNIC. */
RTE_LOG(ERR, PMD, "No default VNIC\n");
exit:
rte_free(vnic_ids);
return -1;
}
int bnxt_hwrm_set_em_filter(struct bnxt *bp,
uint16_t dst_id,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_em_flow_alloc_input req = {.req_type = 0 };
struct hwrm_cfa_em_flow_alloc_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t enables = 0;
if (filter->fw_em_filter_id != UINT64_MAX)
bnxt_hwrm_clear_em_filter(bp, filter);
HWRM_PREP(req, CFA_EM_FLOW_ALLOC);
req.flags = rte_cpu_to_le_32(filter->flags);
enables = filter->enables |
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_ID;
req.dst_id = rte_cpu_to_le_16(dst_id);
if (filter->ip_addr_type) {
req.ip_addr_type = filter->ip_addr_type;
enables |= HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_IPADDR_TYPE;
}
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_L2_FILTER_ID)
req.l2_filter_id = rte_cpu_to_le_64(filter->fw_l2_filter_id);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_MACADDR)
memcpy(req.src_macaddr, filter->src_macaddr,
ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_MACADDR)
memcpy(req.dst_macaddr, filter->dst_macaddr,
ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_OVLAN_VID)
req.ovlan_vid = filter->l2_ovlan;
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_IVLAN_VID)
req.ivlan_vid = filter->l2_ivlan;
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_ETHERTYPE)
req.ethertype = rte_cpu_to_be_16(filter->ethertype);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_IP_PROTOCOL)
req.ip_protocol = filter->ip_protocol;
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_IPADDR)
req.src_ipaddr[0] = rte_cpu_to_be_32(filter->src_ipaddr[0]);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_IPADDR)
req.dst_ipaddr[0] = rte_cpu_to_be_32(filter->dst_ipaddr[0]);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_PORT)
req.src_port = rte_cpu_to_be_16(filter->src_port);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_PORT)
req.dst_port = rte_cpu_to_be_16(filter->dst_port);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_MIRROR_VNIC_ID)
req.mirror_vnic_id = filter->mirror_vnic_id;
req.enables = rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
filter->fw_em_filter_id = rte_le_to_cpu_64(resp->em_filter_id);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_clear_em_filter(struct bnxt *bp, struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_em_flow_free_input req = {.req_type = 0 };
struct hwrm_cfa_em_flow_free_output *resp = bp->hwrm_cmd_resp_addr;
if (filter->fw_em_filter_id == UINT64_MAX)
return 0;
RTE_LOG(ERR, PMD, "Clear EM filter\n");
HWRM_PREP(req, CFA_EM_FLOW_FREE);
req.em_filter_id = rte_cpu_to_le_64(filter->fw_em_filter_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
filter->fw_em_filter_id = -1;
filter->fw_l2_filter_id = -1;
return 0;
}
int bnxt_hwrm_set_ntuple_filter(struct bnxt *bp,
uint16_t dst_id,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_ntuple_filter_alloc_input req = {.req_type = 0 };
struct hwrm_cfa_ntuple_filter_alloc_output *resp =
bp->hwrm_cmd_resp_addr;
uint32_t enables = 0;
if (filter->fw_ntuple_filter_id != UINT64_MAX)
bnxt_hwrm_clear_ntuple_filter(bp, filter);
HWRM_PREP(req, CFA_NTUPLE_FILTER_ALLOC);
req.flags = rte_cpu_to_le_32(filter->flags);
enables = filter->enables |
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_ID;
req.dst_id = rte_cpu_to_le_16(dst_id);
if (filter->ip_addr_type) {
req.ip_addr_type = filter->ip_addr_type;
enables |=
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_IPADDR_TYPE;
}
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID)
req.l2_filter_id = rte_cpu_to_le_64(filter->fw_l2_filter_id);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_MACADDR)
memcpy(req.src_macaddr, filter->src_macaddr,
ETHER_ADDR_LEN);
//if (enables &
//HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_MACADDR)
//memcpy(req.dst_macaddr, filter->dst_macaddr,
//ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_ETHERTYPE)
req.ethertype = rte_cpu_to_be_16(filter->ethertype);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_IP_PROTOCOL)
req.ip_protocol = filter->ip_protocol;
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_IPADDR)
req.src_ipaddr[0] = rte_cpu_to_le_32(filter->src_ipaddr[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_IPADDR_MASK)
req.src_ipaddr_mask[0] =
rte_cpu_to_le_32(filter->src_ipaddr_mask[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_IPADDR)
req.dst_ipaddr[0] = rte_cpu_to_le_32(filter->dst_ipaddr[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_IPADDR_MASK)
req.dst_ipaddr_mask[0] =
rte_cpu_to_be_32(filter->dst_ipaddr_mask[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_PORT)
req.src_port = rte_cpu_to_le_16(filter->src_port);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_PORT_MASK)
req.src_port_mask = rte_cpu_to_le_16(filter->src_port_mask);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_PORT)
req.dst_port = rte_cpu_to_le_16(filter->dst_port);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_PORT_MASK)
req.dst_port_mask = rte_cpu_to_le_16(filter->dst_port_mask);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_MIRROR_VNIC_ID)
req.mirror_vnic_id = filter->mirror_vnic_id;
req.enables = rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
filter->fw_ntuple_filter_id = rte_le_to_cpu_64(resp->ntuple_filter_id);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_clear_ntuple_filter(struct bnxt *bp,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_ntuple_filter_free_input req = {.req_type = 0 };
struct hwrm_cfa_ntuple_filter_free_output *resp =
bp->hwrm_cmd_resp_addr;
if (filter->fw_ntuple_filter_id == UINT64_MAX)
return 0;
HWRM_PREP(req, CFA_NTUPLE_FILTER_FREE);
req.ntuple_filter_id = rte_cpu_to_le_64(filter->fw_ntuple_filter_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
filter->fw_ntuple_filter_id = -1;
return 0;
}