f-stack/dpdk/drivers/bus/dpaa/base/fman/fman_hw.c

593 lines
16 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright 2017 NXP.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the above-listed copyright holders nor the
* names of any contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <ifaddrs.h>
#include <fman.h>
/* This header declares things about Fman hardware itself (the format of status
* words and an inline implementation of CRC64). We include it only in order to
* instantiate the one global variable it depends on.
*/
#include <fsl_fman.h>
#include <fsl_fman_crc64.h>
#include <fsl_bman.h>
2018-11-21 08:34:11 +00:00
#define FMAN_SP_EXT_BUF_MARG_START_SHIFT 16
/* Instantiate the global variable that the inline CRC64 implementation (in
* <fsl_fman.h>) depends on.
*/
DECLARE_FMAN_CRC64_TABLE();
#define ETH_ADDR_TO_UINT64(eth_addr) \
(uint64_t)(((uint64_t)(eth_addr)[0] << 40) | \
((uint64_t)(eth_addr)[1] << 32) | \
((uint64_t)(eth_addr)[2] << 24) | \
((uint64_t)(eth_addr)[3] << 16) | \
((uint64_t)(eth_addr)[4] << 8) | \
((uint64_t)(eth_addr)[5]))
void
fman_if_set_mcast_filter_table(struct fman_if *p)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
void *hashtable_ctrl;
uint32_t i;
hashtable_ctrl = &((struct memac_regs *)__if->ccsr_map)->hashtable_ctrl;
for (i = 0; i < 64; i++)
out_be32(hashtable_ctrl, i|HASH_CTRL_MCAST_EN);
}
void
fman_if_reset_mcast_filter_table(struct fman_if *p)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
void *hashtable_ctrl;
uint32_t i;
hashtable_ctrl = &((struct memac_regs *)__if->ccsr_map)->hashtable_ctrl;
for (i = 0; i < 64; i++)
out_be32(hashtable_ctrl, i & ~HASH_CTRL_MCAST_EN);
}
static
uint32_t get_mac_hash_code(uint64_t eth_addr)
{
uint64_t mask1, mask2;
uint32_t xorVal = 0;
uint8_t i, j;
for (i = 0; i < 6; i++) {
mask1 = eth_addr & (uint64_t)0x01;
eth_addr >>= 1;
for (j = 0; j < 7; j++) {
mask2 = eth_addr & (uint64_t)0x01;
mask1 ^= mask2;
eth_addr >>= 1;
}
xorVal |= (mask1 << (5 - i));
}
return xorVal;
}
int
fman_if_add_hash_mac_addr(struct fman_if *p, uint8_t *eth)
{
uint64_t eth_addr;
void *hashtable_ctrl;
uint32_t hash;
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
eth_addr = ETH_ADDR_TO_UINT64(eth);
if (!(eth_addr & GROUP_ADDRESS))
return -1;
hash = get_mac_hash_code(eth_addr) & HASH_CTRL_ADDR_MASK;
hash = hash | HASH_CTRL_MCAST_EN;
hashtable_ctrl = &((struct memac_regs *)__if->ccsr_map)->hashtable_ctrl;
out_be32(hashtable_ctrl, hash);
return 0;
}
int
fman_if_get_primary_mac_addr(struct fman_if *p, uint8_t *eth)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
void *mac_reg =
&((struct memac_regs *)__if->ccsr_map)->mac_addr0.mac_addr_l;
u32 val = in_be32(mac_reg);
eth[0] = (val & 0x000000ff) >> 0;
eth[1] = (val & 0x0000ff00) >> 8;
eth[2] = (val & 0x00ff0000) >> 16;
eth[3] = (val & 0xff000000) >> 24;
mac_reg = &((struct memac_regs *)__if->ccsr_map)->mac_addr0.mac_addr_u;
val = in_be32(mac_reg);
eth[4] = (val & 0x000000ff) >> 0;
eth[5] = (val & 0x0000ff00) >> 8;
return 0;
}
void
fman_if_clear_mac_addr(struct fman_if *p, uint8_t addr_num)
{
struct __fman_if *m = container_of(p, struct __fman_if, __if);
void *reg;
if (addr_num) {
reg = &((struct memac_regs *)m->ccsr_map)->
mac_addr[addr_num-1].mac_addr_l;
out_be32(reg, 0x0);
reg = &((struct memac_regs *)m->ccsr_map)->
mac_addr[addr_num-1].mac_addr_u;
out_be32(reg, 0x0);
} else {
reg = &((struct memac_regs *)m->ccsr_map)->mac_addr0.mac_addr_l;
out_be32(reg, 0x0);
reg = &((struct memac_regs *)m->ccsr_map)->mac_addr0.mac_addr_u;
out_be32(reg, 0x0);
}
}
int
fman_if_add_mac_addr(struct fman_if *p, uint8_t *eth, uint8_t addr_num)
{
struct __fman_if *m = container_of(p, struct __fman_if, __if);
void *reg;
u32 val;
memcpy(&m->__if.mac_addr, eth, ETHER_ADDR_LEN);
if (addr_num)
reg = &((struct memac_regs *)m->ccsr_map)->
mac_addr[addr_num-1].mac_addr_l;
else
reg = &((struct memac_regs *)m->ccsr_map)->mac_addr0.mac_addr_l;
val = (m->__if.mac_addr.addr_bytes[0] |
(m->__if.mac_addr.addr_bytes[1] << 8) |
(m->__if.mac_addr.addr_bytes[2] << 16) |
(m->__if.mac_addr.addr_bytes[3] << 24));
out_be32(reg, val);
if (addr_num)
reg = &((struct memac_regs *)m->ccsr_map)->
mac_addr[addr_num-1].mac_addr_u;
else
reg = &((struct memac_regs *)m->ccsr_map)->mac_addr0.mac_addr_u;
val = ((m->__if.mac_addr.addr_bytes[4] << 0) |
(m->__if.mac_addr.addr_bytes[5] << 8));
out_be32(reg, val);
return 0;
}
void
fman_if_set_rx_ignore_pause_frames(struct fman_if *p, bool enable)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
u32 value = 0;
void *cmdcfg;
assert(fman_ccsr_map_fd != -1);
/* Set Rx Ignore Pause Frames */
cmdcfg = &((struct memac_regs *)__if->ccsr_map)->command_config;
if (enable)
value = in_be32(cmdcfg) | CMD_CFG_PAUSE_IGNORE;
else
value = in_be32(cmdcfg) & ~CMD_CFG_PAUSE_IGNORE;
out_be32(cmdcfg, value);
}
void
fman_if_conf_max_frame_len(struct fman_if *p, unsigned int max_frame_len)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
unsigned int *maxfrm;
assert(fman_ccsr_map_fd != -1);
/* Set Max frame length */
maxfrm = &((struct memac_regs *)__if->ccsr_map)->maxfrm;
out_be32(maxfrm, (MAXFRM_RX_MASK & max_frame_len));
}
void
fman_if_stats_get(struct fman_if *p, struct rte_eth_stats *stats)
{
struct __fman_if *m = container_of(p, struct __fman_if, __if);
struct memac_regs *regs = m->ccsr_map;
/* read recved packet count */
stats->ipackets = ((u64)in_be32(&regs->rfrm_u)) << 32 |
in_be32(&regs->rfrm_l);
stats->ibytes = ((u64)in_be32(&regs->roct_u)) << 32 |
in_be32(&regs->roct_l);
stats->ierrors = ((u64)in_be32(&regs->rerr_u)) << 32 |
in_be32(&regs->rerr_l);
/* read xmited packet count */
stats->opackets = ((u64)in_be32(&regs->tfrm_u)) << 32 |
in_be32(&regs->tfrm_l);
stats->obytes = ((u64)in_be32(&regs->toct_u)) << 32 |
in_be32(&regs->toct_l);
stats->oerrors = ((u64)in_be32(&regs->terr_u)) << 32 |
in_be32(&regs->terr_l);
}
void
fman_if_stats_get_all(struct fman_if *p, uint64_t *value, int n)
{
struct __fman_if *m = container_of(p, struct __fman_if, __if);
struct memac_regs *regs = m->ccsr_map;
int i;
uint64_t base_offset = offsetof(struct memac_regs, reoct_l);
for (i = 0; i < n; i++)
value[i] = ((u64)in_be32((char *)regs
+ base_offset + 8 * i + 4)) << 32 |
((u64)in_be32((char *)regs
+ base_offset + 8 * i));
}
void
fman_if_stats_reset(struct fman_if *p)
{
struct __fman_if *m = container_of(p, struct __fman_if, __if);
struct memac_regs *regs = m->ccsr_map;
uint32_t tmp;
tmp = in_be32(&regs->statn_config);
tmp |= STATS_CFG_CLR;
out_be32(&regs->statn_config, tmp);
while (in_be32(&regs->statn_config) & STATS_CFG_CLR)
;
}
void
fman_if_promiscuous_enable(struct fman_if *p)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
void *cmdcfg;
assert(fman_ccsr_map_fd != -1);
/* Enable Rx promiscuous mode */
cmdcfg = &((struct memac_regs *)__if->ccsr_map)->command_config;
out_be32(cmdcfg, in_be32(cmdcfg) | CMD_CFG_PROMIS_EN);
}
void
fman_if_promiscuous_disable(struct fman_if *p)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
void *cmdcfg;
assert(fman_ccsr_map_fd != -1);
/* Disable Rx promiscuous mode */
cmdcfg = &((struct memac_regs *)__if->ccsr_map)->command_config;
out_be32(cmdcfg, in_be32(cmdcfg) & (~CMD_CFG_PROMIS_EN));
}
void
fman_if_enable_rx(struct fman_if *p)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
assert(fman_ccsr_map_fd != -1);
/* enable Rx and Tx */
out_be32(__if->ccsr_map + 8, in_be32(__if->ccsr_map + 8) | 3);
}
void
fman_if_disable_rx(struct fman_if *p)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
assert(fman_ccsr_map_fd != -1);
/* only disable Rx, not Tx */
out_be32(__if->ccsr_map + 8, in_be32(__if->ccsr_map + 8) & ~(u32)2);
}
void
fman_if_loopback_enable(struct fman_if *p)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
assert(fman_ccsr_map_fd != -1);
/* Enable loopback mode */
if ((__if->__if.is_memac) && (__if->__if.is_rgmii)) {
unsigned int *ifmode =
&((struct memac_regs *)__if->ccsr_map)->if_mode;
out_be32(ifmode, in_be32(ifmode) | IF_MODE_RLP);
} else{
unsigned int *cmdcfg =
&((struct memac_regs *)__if->ccsr_map)->command_config;
out_be32(cmdcfg, in_be32(cmdcfg) | CMD_CFG_LOOPBACK_EN);
}
}
void
fman_if_loopback_disable(struct fman_if *p)
{
struct __fman_if *__if = container_of(p, struct __fman_if, __if);
assert(fman_ccsr_map_fd != -1);
/* Disable loopback mode */
if ((__if->__if.is_memac) && (__if->__if.is_rgmii)) {
unsigned int *ifmode =
&((struct memac_regs *)__if->ccsr_map)->if_mode;
out_be32(ifmode, in_be32(ifmode) & ~IF_MODE_RLP);
} else {
unsigned int *cmdcfg =
&((struct memac_regs *)__if->ccsr_map)->command_config;
out_be32(cmdcfg, in_be32(cmdcfg) & ~CMD_CFG_LOOPBACK_EN);
}
}
void
fman_if_set_bp(struct fman_if *fm_if, unsigned num __always_unused,
int bpid, size_t bufsize)
{
u32 fmbm_ebmpi;
u32 ebmpi_val_ace = 0xc0000000;
u32 ebmpi_mask = 0xffc00000;
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
assert(fman_ccsr_map_fd != -1);
fmbm_ebmpi =
in_be32(&((struct rx_bmi_regs *)__if->bmi_map)->fmbm_ebmpi[0]);
fmbm_ebmpi = ebmpi_val_ace | (fmbm_ebmpi & ebmpi_mask) | (bpid << 16) |
(bufsize);
out_be32(&((struct rx_bmi_regs *)__if->bmi_map)->fmbm_ebmpi[0],
fmbm_ebmpi);
}
int
fman_if_get_fc_threshold(struct fman_if *fm_if)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
unsigned int *fmbm_mpd;
assert(fman_ccsr_map_fd != -1);
fmbm_mpd = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_mpd;
return in_be32(fmbm_mpd);
}
int
fman_if_set_fc_threshold(struct fman_if *fm_if, u32 high_water,
u32 low_water, u32 bpid)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
unsigned int *fmbm_mpd;
assert(fman_ccsr_map_fd != -1);
fmbm_mpd = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_mpd;
out_be32(fmbm_mpd, FMAN_ENABLE_BPOOL_DEPLETION);
return bm_pool_set_hw_threshold(bpid, low_water, high_water);
}
int
fman_if_get_fc_quanta(struct fman_if *fm_if)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
assert(fman_ccsr_map_fd != -1);
return in_be32(&((struct memac_regs *)__if->ccsr_map)->pause_quanta[0]);
}
int
fman_if_set_fc_quanta(struct fman_if *fm_if, u16 pause_quanta)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
assert(fman_ccsr_map_fd != -1);
out_be32(&((struct memac_regs *)__if->ccsr_map)->pause_quanta[0],
pause_quanta);
return 0;
}
int
fman_if_get_fdoff(struct fman_if *fm_if)
{
2018-11-21 08:34:11 +00:00
u32 fmbm_rebm;
int fdoff;
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
assert(fman_ccsr_map_fd != -1);
2018-11-21 08:34:11 +00:00
fmbm_rebm = in_be32(&((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rebm);
fdoff = (fmbm_rebm >> FMAN_SP_EXT_BUF_MARG_START_SHIFT) & 0x1ff;
return fdoff;
}
void
fman_if_set_err_fqid(struct fman_if *fm_if, uint32_t err_fqid)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
assert(fman_ccsr_map_fd != -1);
unsigned int *fmbm_refqid =
&((struct rx_bmi_regs *)__if->bmi_map)->fmbm_refqid;
out_be32(fmbm_refqid, err_fqid);
}
int
fman_if_get_ic_params(struct fman_if *fm_if, struct fman_if_ic_params *icp)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
int val = 0;
int iceof_mask = 0x001f0000;
int icsz_mask = 0x0000001f;
int iciof_mask = 0x00000f00;
assert(fman_ccsr_map_fd != -1);
unsigned int *fmbm_ricp =
&((struct rx_bmi_regs *)__if->bmi_map)->fmbm_ricp;
val = in_be32(fmbm_ricp);
icp->iceof = (val & iceof_mask) >> 12;
icp->iciof = (val & iciof_mask) >> 4;
icp->icsz = (val & icsz_mask) << 4;
return 0;
}
int
fman_if_set_ic_params(struct fman_if *fm_if,
const struct fman_if_ic_params *icp)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
int val = 0;
int iceof_mask = 0x001f0000;
int icsz_mask = 0x0000001f;
int iciof_mask = 0x00000f00;
assert(fman_ccsr_map_fd != -1);
val |= (icp->iceof << 12) & iceof_mask;
val |= (icp->iciof << 4) & iciof_mask;
val |= (icp->icsz >> 4) & icsz_mask;
unsigned int *fmbm_ricp =
&((struct rx_bmi_regs *)__if->bmi_map)->fmbm_ricp;
out_be32(fmbm_ricp, val);
return 0;
}
void
fman_if_set_fdoff(struct fman_if *fm_if, uint32_t fd_offset)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
unsigned int *fmbm_rebm;
2018-11-21 08:34:11 +00:00
int val = 0;
int fmbm_mask = 0x01ff0000;
val = fd_offset << FMAN_SP_EXT_BUF_MARG_START_SHIFT;
assert(fman_ccsr_map_fd != -1);
fmbm_rebm = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rebm;
2018-11-21 08:34:11 +00:00
out_be32(fmbm_rebm, (in_be32(fmbm_rebm) & ~fmbm_mask) | val);
}
void
fman_if_set_maxfrm(struct fman_if *fm_if, uint16_t max_frm)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
unsigned int *reg_maxfrm;
assert(fman_ccsr_map_fd != -1);
reg_maxfrm = &((struct memac_regs *)__if->ccsr_map)->maxfrm;
out_be32(reg_maxfrm, (in_be32(reg_maxfrm) & 0xFFFF0000) | max_frm);
}
uint16_t
fman_if_get_maxfrm(struct fman_if *fm_if)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
unsigned int *reg_maxfrm;
assert(fman_ccsr_map_fd != -1);
reg_maxfrm = &((struct memac_regs *)__if->ccsr_map)->maxfrm;
return (in_be32(reg_maxfrm) | 0x0000FFFF);
}
void
fman_if_set_dnia(struct fman_if *fm_if, uint32_t nia)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
unsigned int *fmqm_pndn;
assert(fman_ccsr_map_fd != -1);
fmqm_pndn = &((struct fman_port_qmi_regs *)__if->qmi_map)->fmqm_pndn;
out_be32(fmqm_pndn, nia);
}
void
fman_if_discard_rx_errors(struct fman_if *fm_if)
{
struct __fman_if *__if = container_of(fm_if, struct __fman_if, __if);
unsigned int *fmbm_rfsdm, *fmbm_rfsem;
fmbm_rfsem = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rfsem;
out_be32(fmbm_rfsem, 0);
/* Configure the discard mask to discard the error packets which have
* DMA errors, Frame size error, Header error etc. The mask 0x010CE3F0
* is to configured discard all the errors which come in the FD[STATUS]
*/
fmbm_rfsdm = &((struct rx_bmi_regs *)__if->bmi_map)->fmbm_rfsdm;
out_be32(fmbm_rfsdm, 0x010CE3F0);
}