f-stack/dpdk/lib/gro/gro_tcp4.h

308 lines
8.1 KiB
C
Raw Normal View History

2019-06-25 11:12:58 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#ifndef _GRO_TCP4_H_
#define _GRO_TCP4_H_
2019-06-25 11:12:58 +00:00
#include <rte_ip.h>
#include <rte_tcp.h>
2020-06-18 16:55:50 +00:00
#include <rte_vxlan.h>
2019-06-25 11:12:58 +00:00
#define INVALID_ARRAY_INDEX 0xffffffffUL
#define GRO_TCP4_TBL_MAX_ITEM_NUM (1024UL * 1024UL)
/*
2019-06-25 11:12:58 +00:00
* The max length of a IPv4 packet, which includes the length of the L3
* header, the L4 header and the data payload.
*/
2019-06-25 11:12:58 +00:00
#define MAX_IPV4_PKT_LENGTH UINT16_MAX
2019-06-26 10:17:41 +00:00
/* The maximum TCP header length */
#define MAX_TCP_HLEN 60
#define INVALID_TCP_HDRLEN(len) \
2020-06-18 16:55:50 +00:00
(((len) < sizeof(struct rte_tcp_hdr)) || ((len) > MAX_TCP_HLEN))
2019-06-26 10:17:41 +00:00
2019-06-25 11:12:58 +00:00
/* Header fields representing a TCP/IPv4 flow */
struct tcp4_flow_key {
2020-06-18 16:55:50 +00:00
struct rte_ether_addr eth_saddr;
struct rte_ether_addr eth_daddr;
uint32_t ip_src_addr;
uint32_t ip_dst_addr;
uint32_t recv_ack;
uint16_t src_port;
uint16_t dst_port;
};
2019-06-25 11:12:58 +00:00
struct gro_tcp4_flow {
struct tcp4_flow_key key;
/*
2019-06-25 11:12:58 +00:00
* The index of the first packet in the flow.
* INVALID_ARRAY_INDEX indicates an empty flow.
*/
uint32_t start_index;
};
struct gro_tcp4_item {
/*
2019-06-25 11:12:58 +00:00
* The first MBUF segment of the packet. If the value
* is NULL, it means the item is empty.
*/
struct rte_mbuf *firstseg;
2019-06-25 11:12:58 +00:00
/* The last MBUF segment of the packet */
struct rte_mbuf *lastseg;
/*
2019-06-25 11:12:58 +00:00
* The time when the first packet is inserted into the table.
* This value won't be updated, even if the packet is merged
* with other packets.
*/
uint64_t start_time;
/*
2019-06-25 11:12:58 +00:00
* next_pkt_idx is used to chain the packets that
* are in the same flow but can't be merged together
* (e.g. caused by packet reordering).
*/
uint32_t next_pkt_idx;
2019-06-25 11:12:58 +00:00
/* TCP sequence number of the packet */
uint32_t sent_seq;
2019-06-25 11:12:58 +00:00
/* IPv4 ID of the packet */
uint16_t ip_id;
/* the number of merged packets */
uint16_t nb_merged;
2019-06-25 11:12:58 +00:00
/* Indicate if IPv4 ID can be ignored */
uint8_t is_atomic;
};
/*
* TCP/IPv4 reassembly table structure.
*/
struct gro_tcp4_tbl {
/* item array */
struct gro_tcp4_item *items;
2019-06-25 11:12:58 +00:00
/* flow array */
struct gro_tcp4_flow *flows;
/* current item number */
uint32_t item_num;
2019-06-25 11:12:58 +00:00
/* current flow num */
uint32_t flow_num;
/* item array size */
uint32_t max_item_num;
2019-06-25 11:12:58 +00:00
/* flow array size */
uint32_t max_flow_num;
};
/**
* This function creates a TCP/IPv4 reassembly table.
*
* @param socket_id
2019-06-25 11:12:58 +00:00
* Socket index for allocating the TCP/IPv4 reassemble table
* @param max_flow_num
2019-06-25 11:12:58 +00:00
* The maximum number of flows in the TCP/IPv4 GRO table
* @param max_item_per_flow
2019-06-25 11:12:58 +00:00
* The maximum number of packets per flow
*
* @return
2019-06-25 11:12:58 +00:00
* - Return the table pointer on success.
* - Return NULL on failure.
*/
void *gro_tcp4_tbl_create(uint16_t socket_id,
uint16_t max_flow_num,
uint16_t max_item_per_flow);
/**
* This function destroys a TCP/IPv4 reassembly table.
*
* @param tbl
2019-06-25 11:12:58 +00:00
* Pointer pointing to the TCP/IPv4 reassembly table.
*/
void gro_tcp4_tbl_destroy(void *tbl);
/**
2019-06-25 11:12:58 +00:00
* This function merges a TCP/IPv4 packet. It doesn't process the packet,
* which has SYN, FIN, RST, PSH, CWR, ECE or URG set, or doesn't have
* payload.
*
2019-06-25 11:12:58 +00:00
* This function doesn't check if the packet has correct checksums and
* doesn't re-calculate checksums for the merged packet. Additionally,
* it assumes the packets are complete (i.e., MF==0 && frag_off==0),
* when IP fragmentation is possible (i.e., DF==0). It returns the
* packet, if the packet has invalid parameters (e.g. SYN bit is set)
* or there is no available space in the table.
*
* @param pkt
2019-06-25 11:12:58 +00:00
* Packet to reassemble
* @param tbl
2019-06-25 11:12:58 +00:00
* Pointer pointing to the TCP/IPv4 reassembly table
* @start_time
2019-06-25 11:12:58 +00:00
* The time when the packet is inserted into the table
*
* @return
2019-06-25 11:12:58 +00:00
* - Return a positive value if the packet is merged.
* - Return zero if the packet isn't merged but stored in the table.
* - Return a negative value for invalid parameters or no available
* space in the table.
*/
int32_t gro_tcp4_reassemble(struct rte_mbuf *pkt,
struct gro_tcp4_tbl *tbl,
uint64_t start_time);
/**
2019-06-25 11:12:58 +00:00
* This function flushes timeout packets in a TCP/IPv4 reassembly table,
* and without updating checksums.
*
* @param tbl
2019-06-25 11:12:58 +00:00
* TCP/IPv4 reassembly table pointer
* @param flush_timestamp
2019-06-25 11:12:58 +00:00
* Flush packets which are inserted into the table before or at the
* flush_timestamp.
* @param out
2019-06-25 11:12:58 +00:00
* Pointer array used to keep flushed packets
* @param nb_out
2019-06-25 11:12:58 +00:00
* The element number in 'out'. It also determines the maximum number of
* packets that can be flushed finally.
*
* @return
2019-06-25 11:12:58 +00:00
* The number of flushed packets
*/
uint16_t gro_tcp4_tbl_timeout_flush(struct gro_tcp4_tbl *tbl,
uint64_t flush_timestamp,
struct rte_mbuf **out,
uint16_t nb_out);
/**
* This function returns the number of the packets in a TCP/IPv4
* reassembly table.
*
* @param tbl
2019-06-25 11:12:58 +00:00
* TCP/IPv4 reassembly table pointer
*
* @return
2019-06-25 11:12:58 +00:00
* The number of packets in the table
*/
uint32_t gro_tcp4_tbl_pkt_count(void *tbl);
2019-06-25 11:12:58 +00:00
/*
* Check if two TCP/IPv4 packets belong to the same flow.
*/
static inline int
is_same_tcp4_flow(struct tcp4_flow_key k1, struct tcp4_flow_key k2)
{
2020-06-18 16:55:50 +00:00
return (rte_is_same_ether_addr(&k1.eth_saddr, &k2.eth_saddr) &&
rte_is_same_ether_addr(&k1.eth_daddr, &k2.eth_daddr) &&
2019-06-25 11:12:58 +00:00
(k1.ip_src_addr == k2.ip_src_addr) &&
(k1.ip_dst_addr == k2.ip_dst_addr) &&
(k1.recv_ack == k2.recv_ack) &&
(k1.src_port == k2.src_port) &&
(k1.dst_port == k2.dst_port));
}
/*
* Merge two TCP/IPv4 packets without updating checksums.
* If cmp is larger than 0, append the new packet to the
* original packet. Otherwise, pre-pend the new packet to
* the original packet.
*/
static inline int
merge_two_tcp4_packets(struct gro_tcp4_item *item,
struct rte_mbuf *pkt,
int cmp,
uint32_t sent_seq,
uint16_t ip_id,
uint16_t l2_offset)
{
struct rte_mbuf *pkt_head, *pkt_tail, *lastseg;
uint16_t hdr_len, l2_len;
if (cmp > 0) {
pkt_head = item->firstseg;
pkt_tail = pkt;
} else {
pkt_head = pkt;
pkt_tail = item->firstseg;
}
/* check if the IPv4 packet length is greater than the max value */
hdr_len = l2_offset + pkt_head->l2_len + pkt_head->l3_len +
pkt_head->l4_len;
l2_len = l2_offset > 0 ? pkt_head->outer_l2_len : pkt_head->l2_len;
if (unlikely(pkt_head->pkt_len - l2_len + pkt_tail->pkt_len -
hdr_len > MAX_IPV4_PKT_LENGTH))
return 0;
/* remove the packet header for the tail packet */
rte_pktmbuf_adj(pkt_tail, hdr_len);
/* chain two packets together */
if (cmp > 0) {
item->lastseg->next = pkt;
item->lastseg = rte_pktmbuf_lastseg(pkt);
/* update IP ID to the larger value */
item->ip_id = ip_id;
} else {
lastseg = rte_pktmbuf_lastseg(pkt);
lastseg->next = item->firstseg;
item->firstseg = pkt;
/* update sent_seq to the smaller value */
item->sent_seq = sent_seq;
item->ip_id = ip_id;
}
item->nb_merged++;
/* update MBUF metadata for the merged packet */
pkt_head->nb_segs += pkt_tail->nb_segs;
pkt_head->pkt_len += pkt_tail->pkt_len;
return 1;
}
/*
* Check if two TCP/IPv4 packets are neighbors.
*/
static inline int
check_seq_option(struct gro_tcp4_item *item,
2020-06-18 16:55:50 +00:00
struct rte_tcp_hdr *tcph,
2019-06-25 11:12:58 +00:00
uint32_t sent_seq,
uint16_t ip_id,
uint16_t tcp_hl,
uint16_t tcp_dl,
uint16_t l2_offset,
uint8_t is_atomic)
{
struct rte_mbuf *pkt_orig = item->firstseg;
2020-06-18 16:55:50 +00:00
struct rte_ipv4_hdr *iph_orig;
struct rte_tcp_hdr *tcph_orig;
2019-06-25 11:12:58 +00:00
uint16_t len, tcp_hl_orig;
2020-06-18 16:55:50 +00:00
iph_orig = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(pkt_orig, char *) +
2019-06-25 11:12:58 +00:00
l2_offset + pkt_orig->l2_len);
2020-06-18 16:55:50 +00:00
tcph_orig = (struct rte_tcp_hdr *)((char *)iph_orig + pkt_orig->l3_len);
2019-06-25 11:12:58 +00:00
tcp_hl_orig = pkt_orig->l4_len;
/* Check if TCP option fields equal */
2020-06-18 16:55:50 +00:00
len = RTE_MAX(tcp_hl, tcp_hl_orig) - sizeof(struct rte_tcp_hdr);
2019-06-25 11:12:58 +00:00
if ((tcp_hl != tcp_hl_orig) || ((len > 0) &&
(memcmp(tcph + 1, tcph_orig + 1,
len) != 0)))
return 0;
/* Don't merge packets whose DF bits are different */
if (unlikely(item->is_atomic ^ is_atomic))
return 0;
/* check if the two packets are neighbors */
len = pkt_orig->pkt_len - l2_offset - pkt_orig->l2_len -
pkt_orig->l3_len - tcp_hl_orig;
if ((sent_seq == item->sent_seq + len) && (is_atomic ||
(ip_id == item->ip_id + 1)))
/* append the new packet */
return 1;
else if ((sent_seq + tcp_dl == item->sent_seq) && (is_atomic ||
(ip_id + item->nb_merged == item->ip_id)))
/* pre-pend the new packet */
return -1;
return 0;
}
#endif