f-stack/dpdk/lib/dmadev/rte_dmadev.c

867 lines
20 KiB
C
Raw Normal View History

2022-09-06 04:00:10 +00:00
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2021 HiSilicon Limited
* Copyright(c) 2021 Intel Corporation
*/
#include <inttypes.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_string_fns.h>
#include "rte_dmadev.h"
#include "rte_dmadev_pmd.h"
static int16_t dma_devices_max;
struct rte_dma_fp_object *rte_dma_fp_objs;
static struct rte_dma_dev *rte_dma_devices;
static struct {
/* Hold the dev_max information of the primary process. This field is
* set by the primary process and is read by the secondary process.
*/
int16_t dev_max;
struct rte_dma_dev_data data[0];
} *dma_devices_shared_data;
RTE_LOG_REGISTER_DEFAULT(rte_dma_logtype, INFO);
#define RTE_DMA_LOG(level, ...) \
rte_log(RTE_LOG_ ## level, rte_dma_logtype, RTE_FMT("dma: " \
RTE_FMT_HEAD(__VA_ARGS__,) "\n", RTE_FMT_TAIL(__VA_ARGS__,)))
int
rte_dma_dev_max(size_t dev_max)
{
/* This function may be called before rte_eal_init(), so no rte library
* function can be called in this function.
*/
if (dev_max == 0 || dev_max > INT16_MAX)
return -EINVAL;
if (dma_devices_max > 0)
return -EINVAL;
dma_devices_max = dev_max;
return 0;
}
int16_t
rte_dma_next_dev(int16_t start_dev_id)
{
int16_t dev_id = start_dev_id;
while (dev_id < dma_devices_max && rte_dma_devices[dev_id].state == RTE_DMA_DEV_UNUSED)
dev_id++;
if (dev_id < dma_devices_max)
return dev_id;
return -1;
}
static int
dma_check_name(const char *name)
{
size_t name_len;
if (name == NULL) {
RTE_DMA_LOG(ERR, "Name can't be NULL");
return -EINVAL;
}
name_len = strnlen(name, RTE_DEV_NAME_MAX_LEN);
if (name_len == 0) {
RTE_DMA_LOG(ERR, "Zero length DMA device name");
return -EINVAL;
}
if (name_len >= RTE_DEV_NAME_MAX_LEN) {
RTE_DMA_LOG(ERR, "DMA device name is too long");
return -EINVAL;
}
return 0;
}
static int16_t
dma_find_free_id(void)
{
int16_t i;
if (rte_dma_devices == NULL || dma_devices_shared_data == NULL)
return -1;
for (i = 0; i < dma_devices_max; i++) {
if (dma_devices_shared_data->data[i].dev_name[0] == '\0')
return i;
}
return -1;
}
static struct rte_dma_dev*
dma_find_by_name(const char *name)
{
int16_t i;
if (rte_dma_devices == NULL)
return NULL;
for (i = 0; i < dma_devices_max; i++) {
if ((rte_dma_devices[i].state != RTE_DMA_DEV_UNUSED) &&
(!strcmp(name, rte_dma_devices[i].data->dev_name)))
return &rte_dma_devices[i];
}
return NULL;
}
static void dma_fp_object_dummy(struct rte_dma_fp_object *obj);
static int
dma_fp_data_prepare(void)
{
size_t size;
void *ptr;
int i;
if (rte_dma_fp_objs != NULL)
return 0;
/* Fast-path object must align cacheline, but the return value of malloc
* may not be aligned to the cache line. Therefore, extra memory is
* applied for realignment.
* note: We do not call posix_memalign/aligned_alloc because it is
* version dependent on libc.
*/
size = dma_devices_max * sizeof(struct rte_dma_fp_object) +
RTE_CACHE_LINE_SIZE;
ptr = malloc(size);
if (ptr == NULL)
return -ENOMEM;
memset(ptr, 0, size);
rte_dma_fp_objs = RTE_PTR_ALIGN(ptr, RTE_CACHE_LINE_SIZE);
for (i = 0; i < dma_devices_max; i++)
dma_fp_object_dummy(&rte_dma_fp_objs[i]);
return 0;
}
static int
dma_dev_data_prepare(void)
{
size_t size;
if (rte_dma_devices != NULL)
return 0;
size = dma_devices_max * sizeof(struct rte_dma_dev);
rte_dma_devices = malloc(size);
if (rte_dma_devices == NULL)
return -ENOMEM;
memset(rte_dma_devices, 0, size);
return 0;
}
static int
dma_shared_data_prepare(void)
{
const char *mz_name = "rte_dma_dev_data";
const struct rte_memzone *mz;
size_t size;
if (dma_devices_shared_data != NULL)
return 0;
size = sizeof(*dma_devices_shared_data) +
sizeof(struct rte_dma_dev_data) * dma_devices_max;
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
mz = rte_memzone_reserve(mz_name, size, rte_socket_id(), 0);
else
mz = rte_memzone_lookup(mz_name);
if (mz == NULL)
return -ENOMEM;
dma_devices_shared_data = mz->addr;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
memset(dma_devices_shared_data, 0, size);
dma_devices_shared_data->dev_max = dma_devices_max;
} else {
dma_devices_max = dma_devices_shared_data->dev_max;
}
return 0;
}
static int
dma_data_prepare(void)
{
int ret;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
if (dma_devices_max == 0)
dma_devices_max = RTE_DMADEV_DEFAULT_MAX;
ret = dma_fp_data_prepare();
if (ret)
return ret;
ret = dma_dev_data_prepare();
if (ret)
return ret;
ret = dma_shared_data_prepare();
if (ret)
return ret;
} else {
ret = dma_shared_data_prepare();
if (ret)
return ret;
ret = dma_fp_data_prepare();
if (ret)
return ret;
ret = dma_dev_data_prepare();
if (ret)
return ret;
}
return 0;
}
static struct rte_dma_dev *
dma_allocate_primary(const char *name, int numa_node, size_t private_data_size)
{
struct rte_dma_dev *dev;
void *dev_private;
int16_t dev_id;
int ret;
ret = dma_data_prepare();
if (ret < 0) {
RTE_DMA_LOG(ERR, "Cannot initialize dmadevs data");
return NULL;
}
dev = dma_find_by_name(name);
if (dev != NULL) {
RTE_DMA_LOG(ERR, "DMA device already allocated");
return NULL;
}
dev_private = rte_zmalloc_socket(name, private_data_size,
RTE_CACHE_LINE_SIZE, numa_node);
if (dev_private == NULL) {
RTE_DMA_LOG(ERR, "Cannot allocate private data");
return NULL;
}
dev_id = dma_find_free_id();
if (dev_id < 0) {
RTE_DMA_LOG(ERR, "Reached maximum number of DMA devices");
rte_free(dev_private);
return NULL;
}
dev = &rte_dma_devices[dev_id];
dev->data = &dma_devices_shared_data->data[dev_id];
rte_strscpy(dev->data->dev_name, name, sizeof(dev->data->dev_name));
dev->data->dev_id = dev_id;
dev->data->numa_node = numa_node;
dev->data->dev_private = dev_private;
return dev;
}
static struct rte_dma_dev *
dma_attach_secondary(const char *name)
{
struct rte_dma_dev *dev;
int16_t i;
int ret;
ret = dma_data_prepare();
if (ret < 0) {
RTE_DMA_LOG(ERR, "Cannot initialize dmadevs data");
return NULL;
}
for (i = 0; i < dma_devices_max; i++) {
if (!strcmp(dma_devices_shared_data->data[i].dev_name, name))
break;
}
if (i == dma_devices_max) {
RTE_DMA_LOG(ERR,
"Device %s is not driven by the primary process",
name);
return NULL;
}
dev = &rte_dma_devices[i];
dev->data = &dma_devices_shared_data->data[i];
return dev;
}
static struct rte_dma_dev *
dma_allocate(const char *name, int numa_node, size_t private_data_size)
{
struct rte_dma_dev *dev;
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
dev = dma_allocate_primary(name, numa_node, private_data_size);
else
dev = dma_attach_secondary(name);
if (dev) {
dev->fp_obj = &rte_dma_fp_objs[dev->data->dev_id];
dma_fp_object_dummy(dev->fp_obj);
}
return dev;
}
static void
dma_release(struct rte_dma_dev *dev)
{
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
rte_free(dev->data->dev_private);
memset(dev->data, 0, sizeof(struct rte_dma_dev_data));
}
dma_fp_object_dummy(dev->fp_obj);
memset(dev, 0, sizeof(struct rte_dma_dev));
}
struct rte_dma_dev *
rte_dma_pmd_allocate(const char *name, int numa_node, size_t private_data_size)
{
struct rte_dma_dev *dev;
if (dma_check_name(name) != 0 || private_data_size == 0)
return NULL;
dev = dma_allocate(name, numa_node, private_data_size);
if (dev == NULL)
return NULL;
dev->state = RTE_DMA_DEV_REGISTERED;
return dev;
}
int
rte_dma_pmd_release(const char *name)
{
struct rte_dma_dev *dev;
if (dma_check_name(name) != 0)
return -EINVAL;
dev = dma_find_by_name(name);
if (dev == NULL)
return -EINVAL;
if (dev->state == RTE_DMA_DEV_READY)
return rte_dma_close(dev->data->dev_id);
dma_release(dev);
return 0;
}
int
rte_dma_get_dev_id_by_name(const char *name)
{
struct rte_dma_dev *dev;
if (dma_check_name(name) != 0)
return -EINVAL;
dev = dma_find_by_name(name);
if (dev == NULL)
return -EINVAL;
return dev->data->dev_id;
}
bool
rte_dma_is_valid(int16_t dev_id)
{
return (dev_id >= 0) && (dev_id < dma_devices_max) &&
rte_dma_devices != NULL &&
rte_dma_devices[dev_id].state != RTE_DMA_DEV_UNUSED;
}
uint16_t
rte_dma_count_avail(void)
{
uint16_t count = 0;
uint16_t i;
if (rte_dma_devices == NULL)
return count;
for (i = 0; i < dma_devices_max; i++) {
if (rte_dma_devices[i].state != RTE_DMA_DEV_UNUSED)
count++;
}
return count;
}
int
rte_dma_info_get(int16_t dev_id, struct rte_dma_info *dev_info)
{
const struct rte_dma_dev *dev = &rte_dma_devices[dev_id];
int ret;
if (!rte_dma_is_valid(dev_id) || dev_info == NULL)
return -EINVAL;
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->dev_info_get, -ENOTSUP);
memset(dev_info, 0, sizeof(struct rte_dma_info));
ret = (*dev->dev_ops->dev_info_get)(dev, dev_info,
sizeof(struct rte_dma_info));
if (ret != 0)
return ret;
dev_info->dev_name = dev->data->dev_name;
dev_info->numa_node = dev->device->numa_node;
dev_info->nb_vchans = dev->data->dev_conf.nb_vchans;
return 0;
}
int
rte_dma_configure(int16_t dev_id, const struct rte_dma_conf *dev_conf)
{
struct rte_dma_dev *dev = &rte_dma_devices[dev_id];
struct rte_dma_info dev_info;
int ret;
if (!rte_dma_is_valid(dev_id) || dev_conf == NULL)
return -EINVAL;
if (dev->data->dev_started != 0) {
RTE_DMA_LOG(ERR,
"Device %d must be stopped to allow configuration",
dev_id);
return -EBUSY;
}
ret = rte_dma_info_get(dev_id, &dev_info);
if (ret != 0) {
RTE_DMA_LOG(ERR, "Device %d get device info fail", dev_id);
return -EINVAL;
}
if (dev_conf->nb_vchans == 0) {
RTE_DMA_LOG(ERR,
"Device %d configure zero vchans", dev_id);
return -EINVAL;
}
if (dev_conf->nb_vchans > dev_info.max_vchans) {
RTE_DMA_LOG(ERR,
"Device %d configure too many vchans", dev_id);
return -EINVAL;
}
if (dev_conf->enable_silent &&
!(dev_info.dev_capa & RTE_DMA_CAPA_SILENT)) {
RTE_DMA_LOG(ERR, "Device %d don't support silent", dev_id);
return -EINVAL;
}
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->dev_configure, -ENOTSUP);
ret = (*dev->dev_ops->dev_configure)(dev, dev_conf,
sizeof(struct rte_dma_conf));
if (ret == 0)
memcpy(&dev->data->dev_conf, dev_conf,
sizeof(struct rte_dma_conf));
return ret;
}
int
rte_dma_start(int16_t dev_id)
{
struct rte_dma_dev *dev = &rte_dma_devices[dev_id];
int ret;
if (!rte_dma_is_valid(dev_id))
return -EINVAL;
if (dev->data->dev_conf.nb_vchans == 0) {
RTE_DMA_LOG(ERR, "Device %d must be configured first", dev_id);
return -EINVAL;
}
if (dev->data->dev_started != 0) {
RTE_DMA_LOG(WARNING, "Device %d already started", dev_id);
return 0;
}
if (dev->dev_ops->dev_start == NULL)
goto mark_started;
ret = (*dev->dev_ops->dev_start)(dev);
if (ret != 0)
return ret;
mark_started:
dev->data->dev_started = 1;
return 0;
}
int
rte_dma_stop(int16_t dev_id)
{
struct rte_dma_dev *dev = &rte_dma_devices[dev_id];
int ret;
if (!rte_dma_is_valid(dev_id))
return -EINVAL;
if (dev->data->dev_started == 0) {
RTE_DMA_LOG(WARNING, "Device %d already stopped", dev_id);
return 0;
}
if (dev->dev_ops->dev_stop == NULL)
goto mark_stopped;
ret = (*dev->dev_ops->dev_stop)(dev);
if (ret != 0)
return ret;
mark_stopped:
dev->data->dev_started = 0;
return 0;
}
int
rte_dma_close(int16_t dev_id)
{
struct rte_dma_dev *dev = &rte_dma_devices[dev_id];
int ret;
if (!rte_dma_is_valid(dev_id))
return -EINVAL;
/* Device must be stopped before it can be closed */
if (dev->data->dev_started == 1) {
RTE_DMA_LOG(ERR,
"Device %d must be stopped before closing", dev_id);
return -EBUSY;
}
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->dev_close, -ENOTSUP);
ret = (*dev->dev_ops->dev_close)(dev);
if (ret == 0)
dma_release(dev);
return ret;
}
int
rte_dma_vchan_setup(int16_t dev_id, uint16_t vchan,
const struct rte_dma_vchan_conf *conf)
{
struct rte_dma_dev *dev = &rte_dma_devices[dev_id];
struct rte_dma_info dev_info;
bool src_is_dev, dst_is_dev;
int ret;
if (!rte_dma_is_valid(dev_id) || conf == NULL)
return -EINVAL;
if (dev->data->dev_started != 0) {
RTE_DMA_LOG(ERR,
"Device %d must be stopped to allow configuration",
dev_id);
return -EBUSY;
}
ret = rte_dma_info_get(dev_id, &dev_info);
if (ret != 0) {
RTE_DMA_LOG(ERR, "Device %d get device info fail", dev_id);
return -EINVAL;
}
if (dev->data->dev_conf.nb_vchans == 0) {
RTE_DMA_LOG(ERR, "Device %d must be configured first", dev_id);
return -EINVAL;
}
if (vchan >= dev_info.nb_vchans) {
RTE_DMA_LOG(ERR, "Device %d vchan out range!", dev_id);
return -EINVAL;
}
if (conf->direction != RTE_DMA_DIR_MEM_TO_MEM &&
conf->direction != RTE_DMA_DIR_MEM_TO_DEV &&
conf->direction != RTE_DMA_DIR_DEV_TO_MEM &&
conf->direction != RTE_DMA_DIR_DEV_TO_DEV) {
RTE_DMA_LOG(ERR, "Device %d direction invalid!", dev_id);
return -EINVAL;
}
if (conf->direction == RTE_DMA_DIR_MEM_TO_MEM &&
!(dev_info.dev_capa & RTE_DMA_CAPA_MEM_TO_MEM)) {
RTE_DMA_LOG(ERR,
"Device %d don't support mem2mem transfer", dev_id);
return -EINVAL;
}
if (conf->direction == RTE_DMA_DIR_MEM_TO_DEV &&
!(dev_info.dev_capa & RTE_DMA_CAPA_MEM_TO_DEV)) {
RTE_DMA_LOG(ERR,
"Device %d don't support mem2dev transfer", dev_id);
return -EINVAL;
}
if (conf->direction == RTE_DMA_DIR_DEV_TO_MEM &&
!(dev_info.dev_capa & RTE_DMA_CAPA_DEV_TO_MEM)) {
RTE_DMA_LOG(ERR,
"Device %d don't support dev2mem transfer", dev_id);
return -EINVAL;
}
if (conf->direction == RTE_DMA_DIR_DEV_TO_DEV &&
!(dev_info.dev_capa & RTE_DMA_CAPA_DEV_TO_DEV)) {
RTE_DMA_LOG(ERR,
"Device %d don't support dev2dev transfer", dev_id);
return -EINVAL;
}
if (conf->nb_desc < dev_info.min_desc ||
conf->nb_desc > dev_info.max_desc) {
RTE_DMA_LOG(ERR,
"Device %d number of descriptors invalid", dev_id);
return -EINVAL;
}
src_is_dev = conf->direction == RTE_DMA_DIR_DEV_TO_MEM ||
conf->direction == RTE_DMA_DIR_DEV_TO_DEV;
if ((conf->src_port.port_type == RTE_DMA_PORT_NONE && src_is_dev) ||
(conf->src_port.port_type != RTE_DMA_PORT_NONE && !src_is_dev)) {
RTE_DMA_LOG(ERR, "Device %d source port type invalid", dev_id);
return -EINVAL;
}
dst_is_dev = conf->direction == RTE_DMA_DIR_MEM_TO_DEV ||
conf->direction == RTE_DMA_DIR_DEV_TO_DEV;
if ((conf->dst_port.port_type == RTE_DMA_PORT_NONE && dst_is_dev) ||
(conf->dst_port.port_type != RTE_DMA_PORT_NONE && !dst_is_dev)) {
RTE_DMA_LOG(ERR,
"Device %d destination port type invalid", dev_id);
return -EINVAL;
}
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->vchan_setup, -ENOTSUP);
return (*dev->dev_ops->vchan_setup)(dev, vchan, conf,
sizeof(struct rte_dma_vchan_conf));
}
int
rte_dma_stats_get(int16_t dev_id, uint16_t vchan, struct rte_dma_stats *stats)
{
const struct rte_dma_dev *dev = &rte_dma_devices[dev_id];
if (!rte_dma_is_valid(dev_id) || stats == NULL)
return -EINVAL;
if (vchan >= dev->data->dev_conf.nb_vchans &&
vchan != RTE_DMA_ALL_VCHAN) {
RTE_DMA_LOG(ERR,
"Device %d vchan %u out of range", dev_id, vchan);
return -EINVAL;
}
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->stats_get, -ENOTSUP);
memset(stats, 0, sizeof(struct rte_dma_stats));
return (*dev->dev_ops->stats_get)(dev, vchan, stats,
sizeof(struct rte_dma_stats));
}
int
rte_dma_stats_reset(int16_t dev_id, uint16_t vchan)
{
struct rte_dma_dev *dev = &rte_dma_devices[dev_id];
if (!rte_dma_is_valid(dev_id))
return -EINVAL;
if (vchan >= dev->data->dev_conf.nb_vchans &&
vchan != RTE_DMA_ALL_VCHAN) {
RTE_DMA_LOG(ERR,
"Device %d vchan %u out of range", dev_id, vchan);
return -EINVAL;
}
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->stats_reset, -ENOTSUP);
return (*dev->dev_ops->stats_reset)(dev, vchan);
}
int
rte_dma_vchan_status(int16_t dev_id, uint16_t vchan, enum rte_dma_vchan_status *status)
{
struct rte_dma_dev *dev = &rte_dma_devices[dev_id];
if (!rte_dma_is_valid(dev_id))
return -EINVAL;
if (vchan >= dev->data->dev_conf.nb_vchans) {
RTE_DMA_LOG(ERR, "Device %u vchan %u out of range\n", dev_id, vchan);
return -EINVAL;
}
RTE_FUNC_PTR_OR_ERR_RET(*dev->dev_ops->vchan_status, -ENOTSUP);
return (*dev->dev_ops->vchan_status)(dev, vchan, status);
}
static const char *
dma_capability_name(uint64_t capability)
{
static const struct {
uint64_t capability;
const char *name;
} capa_names[] = {
{ RTE_DMA_CAPA_MEM_TO_MEM, "mem2mem" },
{ RTE_DMA_CAPA_MEM_TO_DEV, "mem2dev" },
{ RTE_DMA_CAPA_DEV_TO_MEM, "dev2mem" },
{ RTE_DMA_CAPA_DEV_TO_DEV, "dev2dev" },
{ RTE_DMA_CAPA_SVA, "sva" },
{ RTE_DMA_CAPA_SILENT, "silent" },
{ RTE_DMA_CAPA_HANDLES_ERRORS, "handles_errors" },
{ RTE_DMA_CAPA_OPS_COPY, "copy" },
{ RTE_DMA_CAPA_OPS_COPY_SG, "copy_sg" },
{ RTE_DMA_CAPA_OPS_FILL, "fill" },
};
const char *name = "unknown";
uint32_t i;
for (i = 0; i < RTE_DIM(capa_names); i++) {
if (capability == capa_names[i].capability) {
name = capa_names[i].name;
break;
}
}
return name;
}
static void
dma_dump_capability(FILE *f, uint64_t dev_capa)
{
uint64_t capa;
(void)fprintf(f, " dev_capa: 0x%" PRIx64 " -", dev_capa);
while (dev_capa > 0) {
capa = 1ull << __builtin_ctzll(dev_capa);
(void)fprintf(f, " %s", dma_capability_name(capa));
dev_capa &= ~capa;
}
(void)fprintf(f, "\n");
}
int
rte_dma_dump(int16_t dev_id, FILE *f)
{
const struct rte_dma_dev *dev = &rte_dma_devices[dev_id];
struct rte_dma_info dev_info;
int ret;
if (!rte_dma_is_valid(dev_id) || f == NULL)
return -EINVAL;
ret = rte_dma_info_get(dev_id, &dev_info);
if (ret != 0) {
RTE_DMA_LOG(ERR, "Device %d get device info fail", dev_id);
return -EINVAL;
}
(void)fprintf(f, "DMA Dev %d, '%s' [%s]\n",
dev->data->dev_id,
dev->data->dev_name,
dev->data->dev_started ? "started" : "stopped");
dma_dump_capability(f, dev_info.dev_capa);
(void)fprintf(f, " max_vchans_supported: %u\n", dev_info.max_vchans);
(void)fprintf(f, " nb_vchans_configured: %u\n", dev_info.nb_vchans);
(void)fprintf(f, " silent_mode: %s\n",
dev->data->dev_conf.enable_silent ? "on" : "off");
if (dev->dev_ops->dev_dump != NULL)
return (*dev->dev_ops->dev_dump)(dev, f);
return 0;
}
static int
dummy_copy(__rte_unused void *dev_private, __rte_unused uint16_t vchan,
__rte_unused rte_iova_t src, __rte_unused rte_iova_t dst,
__rte_unused uint32_t length, __rte_unused uint64_t flags)
{
RTE_DMA_LOG(ERR, "copy is not configured or not supported.");
return -EINVAL;
}
static int
dummy_copy_sg(__rte_unused void *dev_private, __rte_unused uint16_t vchan,
__rte_unused const struct rte_dma_sge *src,
__rte_unused const struct rte_dma_sge *dst,
__rte_unused uint16_t nb_src, __rte_unused uint16_t nb_dst,
__rte_unused uint64_t flags)
{
RTE_DMA_LOG(ERR, "copy_sg is not configured or not supported.");
return -EINVAL;
}
static int
dummy_fill(__rte_unused void *dev_private, __rte_unused uint16_t vchan,
__rte_unused uint64_t pattern, __rte_unused rte_iova_t dst,
__rte_unused uint32_t length, __rte_unused uint64_t flags)
{
RTE_DMA_LOG(ERR, "fill is not configured or not supported.");
return -EINVAL;
}
static int
dummy_submit(__rte_unused void *dev_private, __rte_unused uint16_t vchan)
{
RTE_DMA_LOG(ERR, "submit is not configured or not supported.");
return -EINVAL;
}
static uint16_t
dummy_completed(__rte_unused void *dev_private, __rte_unused uint16_t vchan,
__rte_unused const uint16_t nb_cpls,
__rte_unused uint16_t *last_idx, __rte_unused bool *has_error)
{
RTE_DMA_LOG(ERR, "completed is not configured or not supported.");
return 0;
}
static uint16_t
dummy_completed_status(__rte_unused void *dev_private,
__rte_unused uint16_t vchan,
__rte_unused const uint16_t nb_cpls,
__rte_unused uint16_t *last_idx,
__rte_unused enum rte_dma_status_code *status)
{
RTE_DMA_LOG(ERR,
"completed_status is not configured or not supported.");
return 0;
}
static uint16_t
dummy_burst_capacity(__rte_unused const void *dev_private,
__rte_unused uint16_t vchan)
{
RTE_DMA_LOG(ERR, "burst_capacity is not configured or not supported.");
return 0;
}
static void
dma_fp_object_dummy(struct rte_dma_fp_object *obj)
{
obj->dev_private = NULL;
obj->copy = dummy_copy;
obj->copy_sg = dummy_copy_sg;
obj->fill = dummy_fill;
obj->submit = dummy_submit;
obj->completed = dummy_completed;
obj->completed_status = dummy_completed_status;
obj->burst_capacity = dummy_burst_capacity;
}