f-stack/dpdk/drivers/crypto/aesni_mb/rte_aesni_mb_pmd.c

728 lines
20 KiB
C
Raw Normal View History

2017-04-21 10:43:26 +00:00
/*-
* BSD LICENSE
*
* Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_cpuflags.h>
#include "rte_aesni_mb_pmd_private.h"
/**
* Global static parameter used to create a unique name for each AES-NI multi
* buffer crypto device.
*/
static unsigned unique_name_id;
static inline int
create_unique_device_name(char *name, size_t size)
{
int ret;
if (name == NULL)
return -EINVAL;
ret = snprintf(name, size, "%s_%u", RTE_STR(CRYPTODEV_NAME_AESNI_MB_PMD),
unique_name_id++);
if (ret < 0)
return ret;
return 0;
}
typedef void (*hash_one_block_t)(void *data, void *digest);
typedef void (*aes_keyexp_t)(void *key, void *enc_exp_keys, void *dec_exp_keys);
/**
* Calculate the authentication pre-computes
*
* @param one_block_hash Function pointer to calculate digest on ipad/opad
* @param ipad Inner pad output byte array
* @param opad Outer pad output byte array
* @param hkey Authentication key
* @param hkey_len Authentication key length
* @param blocksize Block size of selected hash algo
*/
static void
calculate_auth_precomputes(hash_one_block_t one_block_hash,
uint8_t *ipad, uint8_t *opad,
uint8_t *hkey, uint16_t hkey_len,
uint16_t blocksize)
{
unsigned i, length;
uint8_t ipad_buf[blocksize] __rte_aligned(16);
uint8_t opad_buf[blocksize] __rte_aligned(16);
/* Setup inner and outer pads */
memset(ipad_buf, HMAC_IPAD_VALUE, blocksize);
memset(opad_buf, HMAC_OPAD_VALUE, blocksize);
/* XOR hash key with inner and outer pads */
length = hkey_len > blocksize ? blocksize : hkey_len;
for (i = 0; i < length; i++) {
ipad_buf[i] ^= hkey[i];
opad_buf[i] ^= hkey[i];
}
/* Compute partial hashes */
(*one_block_hash)(ipad_buf, ipad);
(*one_block_hash)(opad_buf, opad);
/* Clean up stack */
memset(ipad_buf, 0, blocksize);
memset(opad_buf, 0, blocksize);
}
/** Get xform chain order */
static int
aesni_mb_get_chain_order(const struct rte_crypto_sym_xform *xform)
{
/*
* Multi-buffer only supports HASH_CIPHER or CIPHER_HASH chained
* operations, all other options are invalid, so we must have exactly
* 2 xform structs chained together
*/
if (xform->next == NULL || xform->next->next != NULL)
return -1;
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
return HASH_CIPHER;
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
return CIPHER_HASH;
return -1;
}
/** Set session authentication parameters */
static int
aesni_mb_set_session_auth_parameters(const struct aesni_mb_ops *mb_ops,
struct aesni_mb_session *sess,
const struct rte_crypto_sym_xform *xform)
{
hash_one_block_t hash_oneblock_fn;
if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) {
MB_LOG_ERR("Crypto xform struct not of type auth");
return -1;
}
/* Set Authentication Parameters */
if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) {
sess->auth.algo = AES_XCBC;
(*mb_ops->aux.keyexp.aes_xcbc)(xform->auth.key.data,
sess->auth.xcbc.k1_expanded,
sess->auth.xcbc.k2, sess->auth.xcbc.k3);
return 0;
}
switch (xform->auth.algo) {
case RTE_CRYPTO_AUTH_MD5_HMAC:
sess->auth.algo = MD5;
hash_oneblock_fn = mb_ops->aux.one_block.md5;
break;
case RTE_CRYPTO_AUTH_SHA1_HMAC:
sess->auth.algo = SHA1;
hash_oneblock_fn = mb_ops->aux.one_block.sha1;
break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
sess->auth.algo = SHA_224;
hash_oneblock_fn = mb_ops->aux.one_block.sha224;
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
sess->auth.algo = SHA_256;
hash_oneblock_fn = mb_ops->aux.one_block.sha256;
break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
sess->auth.algo = SHA_384;
hash_oneblock_fn = mb_ops->aux.one_block.sha384;
break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
sess->auth.algo = SHA_512;
hash_oneblock_fn = mb_ops->aux.one_block.sha512;
break;
default:
MB_LOG_ERR("Unsupported authentication algorithm selection");
return -1;
}
/* Calculate Authentication precomputes */
calculate_auth_precomputes(hash_oneblock_fn,
sess->auth.pads.inner, sess->auth.pads.outer,
xform->auth.key.data,
xform->auth.key.length,
get_auth_algo_blocksize(sess->auth.algo));
return 0;
}
/** Set session cipher parameters */
static int
aesni_mb_set_session_cipher_parameters(const struct aesni_mb_ops *mb_ops,
struct aesni_mb_session *sess,
const struct rte_crypto_sym_xform *xform)
{
aes_keyexp_t aes_keyexp_fn;
if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) {
MB_LOG_ERR("Crypto xform struct not of type cipher");
return -1;
}
/* Select cipher direction */
switch (xform->cipher.op) {
case RTE_CRYPTO_CIPHER_OP_ENCRYPT:
sess->cipher.direction = ENCRYPT;
break;
case RTE_CRYPTO_CIPHER_OP_DECRYPT:
sess->cipher.direction = DECRYPT;
break;
default:
MB_LOG_ERR("Unsupported cipher operation parameter");
return -1;
}
/* Select cipher mode */
switch (xform->cipher.algo) {
case RTE_CRYPTO_CIPHER_AES_CBC:
sess->cipher.mode = CBC;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
sess->cipher.mode = CNTR;
break;
default:
MB_LOG_ERR("Unsupported cipher mode parameter");
return -1;
}
/* Check key length and choose key expansion function */
switch (xform->cipher.key.length) {
case AES_128_BYTES:
sess->cipher.key_length_in_bytes = AES_128_BYTES;
aes_keyexp_fn = mb_ops->aux.keyexp.aes128;
break;
case AES_192_BYTES:
sess->cipher.key_length_in_bytes = AES_192_BYTES;
aes_keyexp_fn = mb_ops->aux.keyexp.aes192;
break;
case AES_256_BYTES:
sess->cipher.key_length_in_bytes = AES_256_BYTES;
aes_keyexp_fn = mb_ops->aux.keyexp.aes256;
break;
default:
MB_LOG_ERR("Unsupported cipher key length");
return -1;
}
/* Expanded cipher keys */
(*aes_keyexp_fn)(xform->cipher.key.data,
sess->cipher.expanded_aes_keys.encode,
sess->cipher.expanded_aes_keys.decode);
return 0;
}
/** Parse crypto xform chain and set private session parameters */
int
aesni_mb_set_session_parameters(const struct aesni_mb_ops *mb_ops,
struct aesni_mb_session *sess,
const struct rte_crypto_sym_xform *xform)
{
const struct rte_crypto_sym_xform *auth_xform = NULL;
const struct rte_crypto_sym_xform *cipher_xform = NULL;
/* Select Crypto operation - hash then cipher / cipher then hash */
switch (aesni_mb_get_chain_order(xform)) {
case HASH_CIPHER:
sess->chain_order = HASH_CIPHER;
auth_xform = xform;
cipher_xform = xform->next;
break;
case CIPHER_HASH:
sess->chain_order = CIPHER_HASH;
auth_xform = xform->next;
cipher_xform = xform;
break;
default:
MB_LOG_ERR("Unsupported operation chain order parameter");
return -1;
}
if (aesni_mb_set_session_auth_parameters(mb_ops, sess, auth_xform)) {
MB_LOG_ERR("Invalid/unsupported authentication parameters");
return -1;
}
if (aesni_mb_set_session_cipher_parameters(mb_ops, sess,
cipher_xform)) {
MB_LOG_ERR("Invalid/unsupported cipher parameters");
return -1;
}
return 0;
}
/** Get multi buffer session */
static struct aesni_mb_session *
get_session(struct aesni_mb_qp *qp, struct rte_crypto_op *op)
{
struct aesni_mb_session *sess = NULL;
if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_WITH_SESSION) {
if (unlikely(op->sym->session->dev_type !=
RTE_CRYPTODEV_AESNI_MB_PMD))
return NULL;
sess = (struct aesni_mb_session *)op->sym->session->_private;
} else {
void *_sess = NULL;
if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
return NULL;
sess = (struct aesni_mb_session *)
((struct rte_cryptodev_sym_session *)_sess)->_private;
if (unlikely(aesni_mb_set_session_parameters(qp->ops,
sess, op->sym->xform) != 0)) {
rte_mempool_put(qp->sess_mp, _sess);
sess = NULL;
}
}
return sess;
}
/**
* Process a crypto operation and complete a JOB_AES_HMAC job structure for
* submission to the multi buffer library for processing.
*
* @param qp queue pair
* @param job JOB_AES_HMAC structure to fill
* @param m mbuf to process
*
* @return
* - Completed JOB_AES_HMAC structure pointer on success
* - NULL pointer if completion of JOB_AES_HMAC structure isn't possible
*/
static JOB_AES_HMAC *
process_crypto_op(struct aesni_mb_qp *qp, struct rte_crypto_op *op,
struct aesni_mb_session *session)
{
JOB_AES_HMAC *job;
struct rte_mbuf *m_src = op->sym->m_src, *m_dst;
uint16_t m_offset = 0;
job = (*qp->ops->job.get_next)(&qp->mb_mgr);
if (unlikely(job == NULL))
return job;
/* Set crypto operation */
job->chain_order = session->chain_order;
/* Set cipher parameters */
job->cipher_direction = session->cipher.direction;
job->cipher_mode = session->cipher.mode;
job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes;
job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode;
job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode;
/* Set authentication parameters */
job->hash_alg = session->auth.algo;
if (job->hash_alg == AES_XCBC) {
job->_k1_expanded = session->auth.xcbc.k1_expanded;
job->_k2 = session->auth.xcbc.k2;
job->_k3 = session->auth.xcbc.k3;
} else {
job->hashed_auth_key_xor_ipad = session->auth.pads.inner;
job->hashed_auth_key_xor_opad = session->auth.pads.outer;
}
/* Mutable crypto operation parameters */
if (op->sym->m_dst) {
m_src = m_dst = op->sym->m_dst;
/* append space for output data to mbuf */
char *odata = rte_pktmbuf_append(m_dst,
rte_pktmbuf_data_len(op->sym->m_src));
if (odata == NULL) {
MB_LOG_ERR("failed to allocate space in destination "
"mbuf for source data");
return NULL;
}
memcpy(odata, rte_pktmbuf_mtod(op->sym->m_src, void*),
rte_pktmbuf_data_len(op->sym->m_src));
} else {
m_dst = m_src;
m_offset = op->sym->cipher.data.offset;
}
/* Set digest output location */
if (job->cipher_direction == DECRYPT) {
job->auth_tag_output = (uint8_t *)rte_pktmbuf_append(m_dst,
get_digest_byte_length(job->hash_alg));
if (job->auth_tag_output == NULL) {
MB_LOG_ERR("failed to allocate space in output mbuf "
"for temp digest");
return NULL;
}
memset(job->auth_tag_output, 0,
sizeof(get_digest_byte_length(job->hash_alg)));
} else {
job->auth_tag_output = op->sym->auth.digest.data;
}
/*
* Multi-buffer library current only support returning a truncated
* digest length as specified in the relevant IPsec RFCs
*/
job->auth_tag_output_len_in_bytes =
get_truncated_digest_byte_length(job->hash_alg);
/* Set IV parameters */
job->iv = op->sym->cipher.iv.data;
job->iv_len_in_bytes = op->sym->cipher.iv.length;
/* Data Parameter */
job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);
job->cipher_start_src_offset_in_bytes = op->sym->cipher.data.offset;
job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length;
job->hash_start_src_offset_in_bytes = op->sym->auth.data.offset;
job->msg_len_to_hash_in_bytes = op->sym->auth.data.length;
/* Set user data to be crypto operation data struct */
job->user_data = op;
job->user_data2 = m_dst;
return job;
}
/**
* Process a completed job and return rte_mbuf which job processed
*
* @param job JOB_AES_HMAC job to process
*
* @return
* - Returns processed mbuf which is trimmed of output digest used in
* verification of supplied digest in the case of a HASH_CIPHER operation
* - Returns NULL on invalid job
*/
static struct rte_crypto_op *
post_process_mb_job(struct aesni_mb_qp *qp, JOB_AES_HMAC *job)
{
struct rte_crypto_op *op =
(struct rte_crypto_op *)job->user_data;
struct rte_mbuf *m_dst =
(struct rte_mbuf *)job->user_data2;
if (op == NULL || m_dst == NULL)
return NULL;
/* set status as successful by default */
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* check if job has been processed */
if (unlikely(job->status != STS_COMPLETED)) {
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
return op;
} else if (job->chain_order == HASH_CIPHER) {
/* Verify digest if required */
if (memcmp(job->auth_tag_output, op->sym->auth.digest.data,
job->auth_tag_output_len_in_bytes) != 0)
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
/* trim area used for digest from mbuf */
rte_pktmbuf_trim(m_dst, get_digest_byte_length(job->hash_alg));
}
/* Free session if a session-less crypto op */
if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_SESSIONLESS) {
rte_mempool_put(qp->sess_mp, op->sym->session);
op->sym->session = NULL;
}
return op;
}
/**
* Process a completed JOB_AES_HMAC job and keep processing jobs until
* get_completed_job return NULL
*
* @param qp Queue Pair to process
* @param job JOB_AES_HMAC job
*
* @return
* - Number of processed jobs
*/
static unsigned
handle_completed_jobs(struct aesni_mb_qp *qp, JOB_AES_HMAC *job)
{
struct rte_crypto_op *op = NULL;
unsigned processed_jobs = 0;
while (job) {
processed_jobs++;
op = post_process_mb_job(qp, job);
if (op)
rte_ring_enqueue(qp->processed_ops, (void *)op);
else
qp->stats.dequeue_err_count++;
job = (*qp->ops->job.get_completed_job)(&qp->mb_mgr);
}
return processed_jobs;
}
static uint16_t
aesni_mb_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct aesni_mb_session *sess;
struct aesni_mb_qp *qp = queue_pair;
JOB_AES_HMAC *job = NULL;
int i, processed_jobs = 0;
for (i = 0; i < nb_ops; i++) {
#ifdef RTE_LIBRTE_AESNI_MB_DEBUG
if (unlikely(op->type != RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
MB_LOG_ERR("PMD only supports symmetric crypto "
"operation requests, op (%p) is not a "
"symmetric operation.", op);
qp->stats.enqueue_err_count++;
goto flush_jobs;
}
#endif
sess = get_session(qp, ops[i]);
if (unlikely(sess == NULL)) {
qp->stats.enqueue_err_count++;
goto flush_jobs;
}
job = process_crypto_op(qp, ops[i], sess);
if (unlikely(job == NULL)) {
qp->stats.enqueue_err_count++;
goto flush_jobs;
}
/* Submit Job */
job = (*qp->ops->job.submit)(&qp->mb_mgr);
/*
* If submit returns a processed job then handle it,
* before submitting subsequent jobs
*/
if (job)
processed_jobs += handle_completed_jobs(qp, job);
}
if (processed_jobs == 0)
goto flush_jobs;
else
qp->stats.enqueued_count += processed_jobs;
return i;
flush_jobs:
/*
* If we haven't processed any jobs in submit loop, then flush jobs
* queue to stop the output stalling
*/
job = (*qp->ops->job.flush_job)(&qp->mb_mgr);
if (job)
qp->stats.enqueued_count += handle_completed_jobs(qp, job);
return i;
}
static uint16_t
aesni_mb_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct aesni_mb_qp *qp = queue_pair;
unsigned nb_dequeued;
nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
(void **)ops, nb_ops);
qp->stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
static int cryptodev_aesni_mb_uninit(const char *name);
static int
cryptodev_aesni_mb_create(const char *name,
struct rte_crypto_vdev_init_params *init_params)
{
struct rte_cryptodev *dev;
char crypto_dev_name[RTE_CRYPTODEV_NAME_MAX_LEN];
struct aesni_mb_private *internals;
enum aesni_mb_vector_mode vector_mode;
/* Check CPU for support for AES instruction set */
if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
MB_LOG_ERR("AES instructions not supported by CPU");
return -EFAULT;
}
/* Check CPU for supported vector instruction set */
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
vector_mode = RTE_AESNI_MB_AVX2;
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
vector_mode = RTE_AESNI_MB_AVX;
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
vector_mode = RTE_AESNI_MB_SSE;
else {
MB_LOG_ERR("Vector instructions are not supported by CPU");
return -EFAULT;
}
/* create a unique device name */
if (create_unique_device_name(crypto_dev_name,
RTE_CRYPTODEV_NAME_MAX_LEN) != 0) {
MB_LOG_ERR("failed to create unique cryptodev name");
return -EINVAL;
}
dev = rte_cryptodev_pmd_virtual_dev_init(crypto_dev_name,
sizeof(struct aesni_mb_private), init_params->socket_id);
if (dev == NULL) {
MB_LOG_ERR("failed to create cryptodev vdev");
goto init_error;
}
dev->dev_type = RTE_CRYPTODEV_AESNI_MB_PMD;
dev->dev_ops = rte_aesni_mb_pmd_ops;
/* register rx/tx burst functions for data path */
dev->dequeue_burst = aesni_mb_pmd_dequeue_burst;
dev->enqueue_burst = aesni_mb_pmd_enqueue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_CPU_AESNI;
switch (vector_mode) {
case RTE_AESNI_MB_SSE:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
break;
case RTE_AESNI_MB_AVX:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
break;
case RTE_AESNI_MB_AVX2:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2;
break;
default:
break;
}
/* Set vector instructions mode supported */
internals = dev->data->dev_private;
internals->vector_mode = vector_mode;
internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
internals->max_nb_sessions = init_params->max_nb_sessions;
return 0;
init_error:
MB_LOG_ERR("driver %s: cryptodev_aesni_create failed", name);
cryptodev_aesni_mb_uninit(crypto_dev_name);
return -EFAULT;
}
static int
cryptodev_aesni_mb_init(const char *name,
const char *input_args)
{
struct rte_crypto_vdev_init_params init_params = {
RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS,
RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS,
rte_socket_id()
};
rte_cryptodev_parse_vdev_init_params(&init_params, input_args);
RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name,
init_params.socket_id);
RTE_LOG(INFO, PMD, " Max number of queue pairs = %d\n",
init_params.max_nb_queue_pairs);
RTE_LOG(INFO, PMD, " Max number of sessions = %d\n",
init_params.max_nb_sessions);
return cryptodev_aesni_mb_create(name, &init_params);
}
static int
cryptodev_aesni_mb_uninit(const char *name)
{
if (name == NULL)
return -EINVAL;
RTE_LOG(INFO, PMD, "Closing AESNI crypto device %s on numa socket %u\n",
name, rte_socket_id());
return 0;
}
static struct rte_driver cryptodev_aesni_mb_pmd_drv = {
.type = PMD_VDEV,
.init = cryptodev_aesni_mb_init,
.uninit = cryptodev_aesni_mb_uninit
};
PMD_REGISTER_DRIVER(cryptodev_aesni_mb_pmd_drv, CRYPTODEV_NAME_AESNI_MB_PMD);
DRIVER_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD,
"max_nb_queue_pairs=<int> "
"max_nb_sessions=<int> "
"socket_id=<int>");