f-stack/dpdk/drivers/crypto/aesni_gcm/aesni_gcm_pmd.c

528 lines
14 KiB
C
Raw Normal View History

2017-04-21 10:43:26 +00:00
/*-
* BSD LICENSE
*
* Copyright(c) 2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <openssl/aes.h>
#include <rte_common.h>
#include <rte_config.h>
#include <rte_hexdump.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_cpuflags.h>
#include "aesni_gcm_pmd_private.h"
/**
* Global static parameter used to create a unique name for each AES-NI multi
* buffer crypto device.
*/
static unsigned unique_name_id;
static inline int
create_unique_device_name(char *name, size_t size)
{
int ret;
if (name == NULL)
return -EINVAL;
ret = snprintf(name, size, "%s_%u", RTE_STR(CRYPTODEV_NAME_AESNI_GCM_PMD),
unique_name_id++);
if (ret < 0)
return ret;
return 0;
}
static int
aesni_gcm_calculate_hash_sub_key(uint8_t *hsubkey, unsigned hsubkey_length,
uint8_t *aeskey, unsigned aeskey_length)
{
uint8_t key[aeskey_length] __rte_aligned(16);
AES_KEY enc_key;
if (hsubkey_length % 16 != 0 && aeskey_length % 16 != 0)
return -EFAULT;
memcpy(key, aeskey, aeskey_length);
if (AES_set_encrypt_key(key, aeskey_length << 3, &enc_key) != 0)
return -EFAULT;
AES_encrypt(hsubkey, hsubkey, &enc_key);
return 0;
}
/** Get xform chain order */
static int
aesni_gcm_get_mode(const struct rte_crypto_sym_xform *xform)
{
/*
* GCM only supports authenticated encryption or authenticated
* decryption, all other options are invalid, so we must have exactly
* 2 xform structs chained together
*/
if (xform->next == NULL || xform->next->next != NULL)
return -1;
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
return AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION;
}
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
return AESNI_GCM_OP_AUTHENTICATED_DECRYPTION;
}
return -1;
}
/** Parse crypto xform chain and set private session parameters */
int
aesni_gcm_set_session_parameters(const struct aesni_gcm_ops *gcm_ops,
struct aesni_gcm_session *sess,
const struct rte_crypto_sym_xform *xform)
{
const struct rte_crypto_sym_xform *auth_xform = NULL;
const struct rte_crypto_sym_xform *cipher_xform = NULL;
uint8_t hsubkey[16] __rte_aligned(16) = { 0 };
/* Select Crypto operation - hash then cipher / cipher then hash */
switch (aesni_gcm_get_mode(xform)) {
case AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION:
sess->op = AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION;
cipher_xform = xform;
auth_xform = xform->next;
break;
case AESNI_GCM_OP_AUTHENTICATED_DECRYPTION:
sess->op = AESNI_GCM_OP_AUTHENTICATED_DECRYPTION;
auth_xform = xform;
cipher_xform = xform->next;
break;
default:
GCM_LOG_ERR("Unsupported operation chain order parameter");
return -EINVAL;
}
/* We only support AES GCM */
if (cipher_xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_GCM &&
auth_xform->auth.algo != RTE_CRYPTO_AUTH_AES_GCM)
return -EINVAL;
/* Select cipher direction */
if (sess->op == AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION &&
cipher_xform->cipher.op !=
RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
GCM_LOG_ERR("xform chain (CIPHER/AUTH) and cipher operation "
"(DECRYPT) specified are an invalid selection");
return -EINVAL;
} else if (sess->op == AESNI_GCM_OP_AUTHENTICATED_DECRYPTION &&
cipher_xform->cipher.op !=
RTE_CRYPTO_CIPHER_OP_DECRYPT) {
GCM_LOG_ERR("xform chain (AUTH/CIPHER) and cipher operation "
"(ENCRYPT) specified are an invalid selection");
return -EINVAL;
}
/* Expand GCM AES128 key */
(*gcm_ops->aux.keyexp.aes128_enc)(cipher_xform->cipher.key.data,
sess->gdata.expanded_keys);
/* Calculate hash sub key here */
aesni_gcm_calculate_hash_sub_key(hsubkey, sizeof(hsubkey),
cipher_xform->cipher.key.data,
cipher_xform->cipher.key.length);
/* Calculate GCM pre-compute */
(*gcm_ops->gcm.precomp)(&sess->gdata, hsubkey);
return 0;
}
/** Get gcm session */
static struct aesni_gcm_session *
aesni_gcm_get_session(struct aesni_gcm_qp *qp, struct rte_crypto_sym_op *op)
{
struct aesni_gcm_session *sess = NULL;
if (op->sess_type == RTE_CRYPTO_SYM_OP_WITH_SESSION) {
if (unlikely(op->session->dev_type
!= RTE_CRYPTODEV_AESNI_GCM_PMD))
return sess;
sess = (struct aesni_gcm_session *)op->session->_private;
} else {
void *_sess;
if (rte_mempool_get(qp->sess_mp, &_sess))
return sess;
sess = (struct aesni_gcm_session *)
((struct rte_cryptodev_session *)_sess)->_private;
if (unlikely(aesni_gcm_set_session_parameters(qp->ops,
sess, op->xform) != 0)) {
rte_mempool_put(qp->sess_mp, _sess);
sess = NULL;
}
}
return sess;
}
/**
* Process a crypto operation and complete a JOB_AES_HMAC job structure for
* submission to the multi buffer library for processing.
*
* @param qp queue pair
* @param op symmetric crypto operation
* @param session GCM session
*
* @return
*
*/
static int
process_gcm_crypto_op(struct aesni_gcm_qp *qp, struct rte_crypto_sym_op *op,
struct aesni_gcm_session *session)
{
uint8_t *src, *dst;
struct rte_mbuf *m = op->m_src;
src = rte_pktmbuf_mtod(m, uint8_t *) + op->cipher.data.offset;
dst = op->m_dst ?
rte_pktmbuf_mtod_offset(op->m_dst, uint8_t *,
op->cipher.data.offset) :
rte_pktmbuf_mtod_offset(m, uint8_t *,
op->cipher.data.offset);
/* sanity checks */
if (op->cipher.iv.length != 16 && op->cipher.iv.length != 0) {
GCM_LOG_ERR("iv");
return -1;
}
if (op->auth.aad.length != 12 && op->auth.aad.length != 8 &&
op->auth.aad.length != 0) {
GCM_LOG_ERR("iv");
return -1;
}
if (op->auth.digest.length != 16 &&
op->auth.digest.length != 12 &&
op->auth.digest.length != 8 &&
op->auth.digest.length != 0) {
GCM_LOG_ERR("iv");
return -1;
}
if (session->op == AESNI_GCM_OP_AUTHENTICATED_ENCRYPTION) {
(*qp->ops->gcm.enc)(&session->gdata, dst, src,
(uint64_t)op->cipher.data.length,
op->cipher.iv.data,
op->auth.aad.data,
(uint64_t)op->auth.aad.length,
op->auth.digest.data,
(uint64_t)op->auth.digest.length);
} else if (session->op == AESNI_GCM_OP_AUTHENTICATED_DECRYPTION) {
uint8_t *auth_tag = (uint8_t *)rte_pktmbuf_append(m,
op->auth.digest.length);
if (!auth_tag) {
GCM_LOG_ERR("iv");
return -1;
}
(*qp->ops->gcm.dec)(&session->gdata, dst, src,
(uint64_t)op->cipher.data.length,
op->cipher.iv.data,
op->auth.aad.data,
(uint64_t)op->auth.aad.length,
auth_tag,
(uint64_t)op->auth.digest.length);
} else {
GCM_LOG_ERR("iv");
return -1;
}
return 0;
}
/**
* Process a completed job and return rte_mbuf which job processed
*
* @param job JOB_AES_HMAC job to process
*
* @return
* - Returns processed mbuf which is trimmed of output digest used in
* verification of supplied digest in the case of a HASH_CIPHER operation
* - Returns NULL on invalid job
*/
static void
post_process_gcm_crypto_op(struct rte_crypto_op *op)
{
struct rte_mbuf *m = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
struct aesni_gcm_session *session =
(struct aesni_gcm_session *)op->sym->session->_private;
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Verify digest if required */
if (session->op == AESNI_GCM_OP_AUTHENTICATED_DECRYPTION) {
uint8_t *tag = rte_pktmbuf_mtod_offset(m, uint8_t *,
m->data_len - op->sym->auth.digest.length);
#ifdef RTE_LIBRTE_PMD_AESNI_GCM_DEBUG
rte_hexdump(stdout, "auth tag (orig):",
op->sym->auth.digest.data, op->sym->auth.digest.length);
rte_hexdump(stdout, "auth tag (calc):",
tag, op->sym->auth.digest.length);
#endif
if (memcmp(tag, op->sym->auth.digest.data,
op->sym->auth.digest.length) != 0)
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
/* trim area used for digest from mbuf */
rte_pktmbuf_trim(m, op->sym->auth.digest.length);
}
}
/**
* Process a completed GCM request
*
* @param qp Queue Pair to process
* @param job JOB_AES_HMAC job
*
* @return
* - Number of processed jobs
*/
static void
handle_completed_gcm_crypto_op(struct aesni_gcm_qp *qp,
struct rte_crypto_op *op)
{
post_process_gcm_crypto_op(op);
/* Free session if a session-less crypto op */
if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_SESSIONLESS) {
rte_mempool_put(qp->sess_mp, op->sym->session);
op->sym->session = NULL;
}
rte_ring_enqueue(qp->processed_pkts, (void *)op);
}
static uint16_t
aesni_gcm_pmd_enqueue_burst(void *queue_pair,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct aesni_gcm_session *sess;
struct aesni_gcm_qp *qp = queue_pair;
int i, retval = 0;
for (i = 0; i < nb_ops; i++) {
sess = aesni_gcm_get_session(qp, ops[i]->sym);
if (unlikely(sess == NULL)) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
qp->qp_stats.enqueue_err_count++;
break;
}
retval = process_gcm_crypto_op(qp, ops[i]->sym, sess);
if (retval < 0) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
qp->qp_stats.enqueue_err_count++;
break;
}
handle_completed_gcm_crypto_op(qp, ops[i]);
qp->qp_stats.enqueued_count++;
}
return i;
}
static uint16_t
aesni_gcm_pmd_dequeue_burst(void *queue_pair,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct aesni_gcm_qp *qp = queue_pair;
unsigned nb_dequeued;
nb_dequeued = rte_ring_dequeue_burst(qp->processed_pkts,
(void **)ops, nb_ops);
qp->qp_stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
static int aesni_gcm_uninit(const char *name);
static int
aesni_gcm_create(const char *name,
struct rte_crypto_vdev_init_params *init_params)
{
struct rte_cryptodev *dev;
char crypto_dev_name[RTE_CRYPTODEV_NAME_MAX_LEN];
struct aesni_gcm_private *internals;
enum aesni_gcm_vector_mode vector_mode;
/* Check CPU for support for AES instruction set */
if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
GCM_LOG_ERR("AES instructions not supported by CPU");
return -EFAULT;
}
/* Check CPU for supported vector instruction set */
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
vector_mode = RTE_AESNI_GCM_AVX2;
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
vector_mode = RTE_AESNI_GCM_AVX;
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
vector_mode = RTE_AESNI_GCM_SSE;
else {
GCM_LOG_ERR("Vector instructions are not supported by CPU");
return -EFAULT;
}
/* create a unique device name */
if (create_unique_device_name(crypto_dev_name,
RTE_CRYPTODEV_NAME_MAX_LEN) != 0) {
GCM_LOG_ERR("failed to create unique cryptodev name");
return -EINVAL;
}
dev = rte_cryptodev_pmd_virtual_dev_init(crypto_dev_name,
sizeof(struct aesni_gcm_private), init_params->socket_id);
if (dev == NULL) {
GCM_LOG_ERR("failed to create cryptodev vdev");
goto init_error;
}
dev->dev_type = RTE_CRYPTODEV_AESNI_GCM_PMD;
dev->dev_ops = rte_aesni_gcm_pmd_ops;
/* register rx/tx burst functions for data path */
dev->dequeue_burst = aesni_gcm_pmd_dequeue_burst;
dev->enqueue_burst = aesni_gcm_pmd_enqueue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_CPU_AESNI;
switch (vector_mode) {
case RTE_AESNI_GCM_SSE:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
break;
case RTE_AESNI_GCM_AVX:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
break;
case RTE_AESNI_GCM_AVX2:
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2;
break;
default:
break;
}
/* Set vector instructions mode supported */
internals = dev->data->dev_private;
internals->vector_mode = vector_mode;
internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
internals->max_nb_sessions = init_params->max_nb_sessions;
return 0;
init_error:
GCM_LOG_ERR("driver %s: create failed", name);
aesni_gcm_uninit(crypto_dev_name);
return -EFAULT;
}
static int
aesni_gcm_init(const char *name, const char *input_args)
{
struct rte_crypto_vdev_init_params init_params = {
RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS,
RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS,
rte_socket_id()
};
rte_cryptodev_parse_vdev_init_params(&init_params, input_args);
RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name,
init_params.socket_id);
RTE_LOG(INFO, PMD, " Max number of queue pairs = %d\n",
init_params.max_nb_queue_pairs);
RTE_LOG(INFO, PMD, " Max number of sessions = %d\n",
init_params.max_nb_sessions);
return aesni_gcm_create(name, &init_params);
}
static int
aesni_gcm_uninit(const char *name)
{
if (name == NULL)
return -EINVAL;
GCM_LOG_INFO("Closing AESNI crypto device %s on numa socket %u\n",
name, rte_socket_id());
return 0;
}
static struct rte_driver aesni_gcm_pmd_drv = {
.type = PMD_VDEV,
.init = aesni_gcm_init,
.uninit = aesni_gcm_uninit
};
PMD_REGISTER_DRIVER(aesni_gcm_pmd_drv, CRYPTODEV_NAME_AESNI_GCM_PMD);
DRIVER_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_GCM_PMD,
"max_nb_queue_pairs=<int> "
"max_nb_sessions=<int> "
"socket_id=<int>");