f-stack/dpdk/drivers/crypto/armv8/rte_armv8_pmd.c

883 lines
25 KiB
C
Raw Permalink Normal View History

/*
* BSD LICENSE
*
* Copyright (C) Cavium, Inc. 2017.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Cavium, Inc nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdbool.h>
#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_bus_vdev.h>
#include <rte_malloc.h>
#include <rte_cpuflags.h>
#include "armv8_crypto_defs.h"
#include "rte_armv8_pmd_private.h"
static uint8_t cryptodev_driver_id;
static int cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev);
/**
* Pointers to the supported combined mode crypto functions are stored
* in the static tables. Each combined (chained) cryptographic operation
* can be described by a set of numbers:
* - order: order of operations (cipher, auth) or (auth, cipher)
* - direction: encryption or decryption
* - calg: cipher algorithm such as AES_CBC, AES_CTR, etc.
* - aalg: authentication algorithm such as SHA1, SHA256, etc.
* - keyl: cipher key length, for example 128, 192, 256 bits
*
* In order to quickly acquire each function pointer based on those numbers,
* a hierarchy of arrays is maintained. The final level, 3D array is indexed
* by the combined mode function parameters only (cipher algorithm,
* authentication algorithm and key length).
*
* This gives 3 memory accesses to obtain a function pointer instead of
* traversing the array manually and comparing function parameters on each loop.
*
* +--+CRYPTO_FUNC
* +--+ENC|
* +--+CA|
* | +--+DEC
* ORDER|
* | +--+ENC
* +--+AC|
* +--+DEC
*
*/
/**
* 3D array type for ARM Combined Mode crypto functions pointers.
* CRYPTO_CIPHER_MAX: max cipher ID number
* CRYPTO_AUTH_MAX: max auth ID number
* CRYPTO_CIPHER_KEYLEN_MAX: max key length ID number
*/
typedef const crypto_func_t
crypto_func_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_AUTH_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
/* Evaluate to key length definition */
#define KEYL(keyl) (ARMV8_CRYPTO_CIPHER_KEYLEN_ ## keyl)
/* Local aliases for supported ciphers */
#define CIPH_AES_CBC RTE_CRYPTO_CIPHER_AES_CBC
/* Local aliases for supported hashes */
#define AUTH_SHA1_HMAC RTE_CRYPTO_AUTH_SHA1_HMAC
#define AUTH_SHA256_HMAC RTE_CRYPTO_AUTH_SHA256_HMAC
/**
* Arrays containing pointers to particular cryptographic,
* combined mode functions.
* crypto_op_ca_encrypt: cipher (encrypt), authenticate
* crypto_op_ca_decrypt: cipher (decrypt), authenticate
* crypto_op_ac_encrypt: authenticate, cipher (encrypt)
* crypto_op_ac_decrypt: authenticate, cipher (decrypt)
*/
static const crypto_func_tbl_t
crypto_op_ca_encrypt = {
/* [cipher alg][auth alg][key length] = crypto_function, */
[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] = aes128cbc_sha1_hmac,
[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] = aes128cbc_sha256_hmac,
};
static const crypto_func_tbl_t
crypto_op_ca_decrypt = {
NULL
};
static const crypto_func_tbl_t
crypto_op_ac_encrypt = {
NULL
};
static const crypto_func_tbl_t
crypto_op_ac_decrypt = {
/* [cipher alg][auth alg][key length] = crypto_function, */
[CIPH_AES_CBC][AUTH_SHA1_HMAC][KEYL(128)] = sha1_hmac_aes128cbc_dec,
[CIPH_AES_CBC][AUTH_SHA256_HMAC][KEYL(128)] = sha256_hmac_aes128cbc_dec,
};
/**
* Arrays containing pointers to particular cryptographic function sets,
* covering given cipher operation directions (encrypt, decrypt)
* for each order of cipher and authentication pairs.
*/
static const crypto_func_tbl_t *
crypto_cipher_auth[] = {
&crypto_op_ca_encrypt,
&crypto_op_ca_decrypt,
NULL
};
static const crypto_func_tbl_t *
crypto_auth_cipher[] = {
&crypto_op_ac_encrypt,
&crypto_op_ac_decrypt,
NULL
};
/**
* Top level array containing pointers to particular cryptographic
* function sets, covering given order of chained operations.
* crypto_cipher_auth: cipher first, authenticate after
* crypto_auth_cipher: authenticate first, cipher after
*/
static const crypto_func_tbl_t **
crypto_chain_order[] = {
crypto_cipher_auth,
crypto_auth_cipher,
NULL
};
/**
* Extract particular combined mode crypto function from the 3D array.
*/
#define CRYPTO_GET_ALGO(order, cop, calg, aalg, keyl) \
({ \
crypto_func_tbl_t *func_tbl = \
(crypto_chain_order[(order)])[(cop)]; \
\
((*func_tbl)[(calg)][(aalg)][KEYL(keyl)]); \
})
/*----------------------------------------------------------------------------*/
/**
* 2D array type for ARM key schedule functions pointers.
* CRYPTO_CIPHER_MAX: max cipher ID number
* CRYPTO_CIPHER_KEYLEN_MAX: max key length ID number
*/
typedef const crypto_key_sched_t
crypto_key_sched_tbl_t[CRYPTO_CIPHER_MAX][CRYPTO_CIPHER_KEYLEN_MAX];
static const crypto_key_sched_tbl_t
crypto_key_sched_encrypt = {
/* [cipher alg][key length] = key_expand_func, */
[CIPH_AES_CBC][KEYL(128)] = aes128_key_sched_enc,
};
static const crypto_key_sched_tbl_t
crypto_key_sched_decrypt = {
/* [cipher alg][key length] = key_expand_func, */
[CIPH_AES_CBC][KEYL(128)] = aes128_key_sched_dec,
};
/**
* Top level array containing pointers to particular key generation
* function sets, covering given operation direction.
* crypto_key_sched_encrypt: keys for encryption
* crypto_key_sched_decrypt: keys for decryption
*/
static const crypto_key_sched_tbl_t *
crypto_key_sched_dir[] = {
&crypto_key_sched_encrypt,
&crypto_key_sched_decrypt,
NULL
};
/**
* Extract particular combined mode crypto function from the 3D array.
*/
#define CRYPTO_GET_KEY_SCHED(cop, calg, keyl) \
({ \
crypto_key_sched_tbl_t *ks_tbl = crypto_key_sched_dir[(cop)]; \
\
((*ks_tbl)[(calg)][KEYL(keyl)]); \
})
/*----------------------------------------------------------------------------*/
/*
*------------------------------------------------------------------------------
* Session Prepare
*------------------------------------------------------------------------------
*/
/** Get xform chain order */
static enum armv8_crypto_chain_order
armv8_crypto_get_chain_order(const struct rte_crypto_sym_xform *xform)
{
/*
* This driver currently covers only chained operations.
* Ignore only cipher or only authentication operations
* or chains longer than 2 xform structures.
*/
if (xform->next == NULL || xform->next->next != NULL)
return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
return ARMV8_CRYPTO_CHAIN_AUTH_CIPHER;
}
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
return ARMV8_CRYPTO_CHAIN_CIPHER_AUTH;
}
return ARMV8_CRYPTO_CHAIN_NOT_SUPPORTED;
}
static inline void
auth_hmac_pad_prepare(struct armv8_crypto_session *sess,
const struct rte_crypto_sym_xform *xform)
{
size_t i;
/* Generate i_key_pad and o_key_pad */
memset(sess->auth.hmac.i_key_pad, 0, sizeof(sess->auth.hmac.i_key_pad));
rte_memcpy(sess->auth.hmac.i_key_pad, sess->auth.hmac.key,
xform->auth.key.length);
memset(sess->auth.hmac.o_key_pad, 0, sizeof(sess->auth.hmac.o_key_pad));
rte_memcpy(sess->auth.hmac.o_key_pad, sess->auth.hmac.key,
xform->auth.key.length);
/*
* XOR key with IPAD/OPAD values to obtain i_key_pad
* and o_key_pad.
* Byte-by-byte operation may seem to be the less efficient
* here but in fact it's the opposite.
* The result ASM code is likely operate on NEON registers
* (load auth key to Qx, load IPAD/OPAD to multiple
* elements of Qy, eor 128 bits at once).
*/
for (i = 0; i < SHA_BLOCK_MAX; i++) {
sess->auth.hmac.i_key_pad[i] ^= HMAC_IPAD_VALUE;
sess->auth.hmac.o_key_pad[i] ^= HMAC_OPAD_VALUE;
}
}
static inline int
auth_set_prerequisites(struct armv8_crypto_session *sess,
const struct rte_crypto_sym_xform *xform)
{
uint8_t partial[64] = { 0 };
int error;
switch (xform->auth.algo) {
case RTE_CRYPTO_AUTH_SHA1_HMAC:
/*
* Generate authentication key, i_key_pad and o_key_pad.
*/
/* Zero memory under key */
memset(sess->auth.hmac.key, 0, SHA1_BLOCK_SIZE);
/*
* Now copy the given authentication key to the session
* key.
*/
rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
xform->auth.key.length);
/* Prepare HMAC padding: key|pattern */
auth_hmac_pad_prepare(sess, xform);
/*
* Calculate partial hash values for i_key_pad and o_key_pad.
* Will be used as initialization state for final HMAC.
*/
error = sha1_block_partial(NULL, sess->auth.hmac.i_key_pad,
partial, SHA1_BLOCK_SIZE);
if (error != 0)
return -1;
memcpy(sess->auth.hmac.i_key_pad, partial, SHA1_BLOCK_SIZE);
error = sha1_block_partial(NULL, sess->auth.hmac.o_key_pad,
partial, SHA1_BLOCK_SIZE);
if (error != 0)
return -1;
memcpy(sess->auth.hmac.o_key_pad, partial, SHA1_BLOCK_SIZE);
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
/*
* Generate authentication key, i_key_pad and o_key_pad.
*/
/* Zero memory under key */
memset(sess->auth.hmac.key, 0, SHA256_BLOCK_SIZE);
/*
* Now copy the given authentication key to the session
* key.
*/
rte_memcpy(sess->auth.hmac.key, xform->auth.key.data,
xform->auth.key.length);
/* Prepare HMAC padding: key|pattern */
auth_hmac_pad_prepare(sess, xform);
/*
* Calculate partial hash values for i_key_pad and o_key_pad.
* Will be used as initialization state for final HMAC.
*/
error = sha256_block_partial(NULL, sess->auth.hmac.i_key_pad,
partial, SHA256_BLOCK_SIZE);
if (error != 0)
return -1;
memcpy(sess->auth.hmac.i_key_pad, partial, SHA256_BLOCK_SIZE);
error = sha256_block_partial(NULL, sess->auth.hmac.o_key_pad,
partial, SHA256_BLOCK_SIZE);
if (error != 0)
return -1;
memcpy(sess->auth.hmac.o_key_pad, partial, SHA256_BLOCK_SIZE);
break;
default:
break;
}
return 0;
}
static inline int
cipher_set_prerequisites(struct armv8_crypto_session *sess,
const struct rte_crypto_sym_xform *xform)
{
crypto_key_sched_t cipher_key_sched;
cipher_key_sched = sess->cipher.key_sched;
if (likely(cipher_key_sched != NULL)) {
/* Set up cipher session key */
cipher_key_sched(sess->cipher.key.data, xform->cipher.key.data);
}
return 0;
}
static int
armv8_crypto_set_session_chained_parameters(struct armv8_crypto_session *sess,
const struct rte_crypto_sym_xform *cipher_xform,
const struct rte_crypto_sym_xform *auth_xform)
{
enum armv8_crypto_chain_order order;
enum armv8_crypto_cipher_operation cop;
enum rte_crypto_cipher_algorithm calg;
enum rte_crypto_auth_algorithm aalg;
/* Validate and prepare scratch order of combined operations */
switch (sess->chain_order) {
case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
order = sess->chain_order;
break;
default:
return -ENOTSUP;
}
/* Select cipher direction */
sess->cipher.direction = cipher_xform->cipher.op;
/* Select cipher key */
sess->cipher.key.length = cipher_xform->cipher.key.length;
/* Set cipher direction */
cop = sess->cipher.direction;
/* Set cipher algorithm */
calg = cipher_xform->cipher.algo;
/* Select cipher algo */
switch (calg) {
/* Cover supported cipher algorithms */
case RTE_CRYPTO_CIPHER_AES_CBC:
sess->cipher.algo = calg;
/* IV len is always 16 bytes (block size) for AES CBC */
sess->cipher.iv.length = 16;
break;
default:
return -ENOTSUP;
}
/* Select auth generate/verify */
sess->auth.operation = auth_xform->auth.op;
/* Select auth algo */
switch (auth_xform->auth.algo) {
/* Cover supported hash algorithms */
case RTE_CRYPTO_AUTH_SHA1_HMAC:
case RTE_CRYPTO_AUTH_SHA256_HMAC: /* Fall through */
aalg = auth_xform->auth.algo;
sess->auth.mode = ARMV8_CRYPTO_AUTH_AS_HMAC;
break;
default:
return -ENOTSUP;
}
/* Set the digest length */
sess->auth.digest_length = auth_xform->auth.digest_length;
/* Verify supported key lengths and extract proper algorithm */
switch (cipher_xform->cipher.key.length << 3) {
case 128:
sess->crypto_func =
CRYPTO_GET_ALGO(order, cop, calg, aalg, 128);
sess->cipher.key_sched =
CRYPTO_GET_KEY_SCHED(cop, calg, 128);
break;
case 192:
case 256:
/* These key lengths are not supported yet */
default: /* Fall through */
sess->crypto_func = NULL;
sess->cipher.key_sched = NULL;
return -ENOTSUP;
}
if (unlikely(sess->crypto_func == NULL)) {
/*
* If we got here that means that there must be a bug
* in the algorithms selection above. Nevertheless keep
* it here to catch bug immediately and avoid NULL pointer
* dereference in OPs processing.
*/
ARMV8_CRYPTO_LOG_ERR(
"No appropriate crypto function for given parameters");
return -EINVAL;
}
/* Set up cipher session prerequisites */
if (cipher_set_prerequisites(sess, cipher_xform) != 0)
return -EINVAL;
/* Set up authentication session prerequisites */
if (auth_set_prerequisites(sess, auth_xform) != 0)
return -EINVAL;
return 0;
}
/** Parse crypto xform chain and set private session parameters */
int
armv8_crypto_set_session_parameters(struct armv8_crypto_session *sess,
const struct rte_crypto_sym_xform *xform)
{
const struct rte_crypto_sym_xform *cipher_xform = NULL;
const struct rte_crypto_sym_xform *auth_xform = NULL;
bool is_chained_op;
int ret;
/* Filter out spurious/broken requests */
if (xform == NULL)
return -EINVAL;
sess->chain_order = armv8_crypto_get_chain_order(xform);
switch (sess->chain_order) {
case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
cipher_xform = xform;
auth_xform = xform->next;
is_chained_op = true;
break;
case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
auth_xform = xform;
cipher_xform = xform->next;
is_chained_op = true;
break;
default:
is_chained_op = false;
return -ENOTSUP;
}
/* Set IV offset */
sess->cipher.iv.offset = cipher_xform->cipher.iv.offset;
if (is_chained_op) {
ret = armv8_crypto_set_session_chained_parameters(sess,
cipher_xform, auth_xform);
if (unlikely(ret != 0)) {
ARMV8_CRYPTO_LOG_ERR(
"Invalid/unsupported chained (cipher/auth) parameters");
return ret;
}
} else {
ARMV8_CRYPTO_LOG_ERR("Invalid/unsupported operation");
return -ENOTSUP;
}
return 0;
}
/** Provide session for operation */
static inline struct armv8_crypto_session *
get_session(struct armv8_crypto_qp *qp, struct rte_crypto_op *op)
{
struct armv8_crypto_session *sess = NULL;
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
/* get existing session */
if (likely(op->sym->session != NULL)) {
sess = (struct armv8_crypto_session *)
get_session_private_data(
op->sym->session,
cryptodev_driver_id);
}
} else {
/* provide internal session */
void *_sess = NULL;
void *_sess_private_data = NULL;
if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
return NULL;
if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data))
return NULL;
sess = (struct armv8_crypto_session *)_sess_private_data;
if (unlikely(armv8_crypto_set_session_parameters(sess,
op->sym->xform) != 0)) {
rte_mempool_put(qp->sess_mp, _sess);
rte_mempool_put(qp->sess_mp, _sess_private_data);
sess = NULL;
}
op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
set_session_private_data(op->sym->session, cryptodev_driver_id,
_sess_private_data);
}
if (unlikely(sess == NULL))
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
return sess;
}
/*
*------------------------------------------------------------------------------
* Process Operations
*------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------*/
/** Process cipher operation */
static inline void
process_armv8_chained_op(struct armv8_crypto_qp *qp, struct rte_crypto_op *op,
struct armv8_crypto_session *sess,
struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
{
crypto_func_t crypto_func;
crypto_arg_t arg;
struct rte_mbuf *m_asrc, *m_adst;
uint8_t *csrc, *cdst;
uint8_t *adst, *asrc;
uint64_t clen, alen;
int error;
clen = op->sym->cipher.data.length;
alen = op->sym->auth.data.length;
csrc = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
op->sym->cipher.data.offset);
cdst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
op->sym->cipher.data.offset);
switch (sess->chain_order) {
case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
m_asrc = m_adst = mbuf_dst;
break;
case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER:
m_asrc = mbuf_src;
m_adst = mbuf_dst;
break;
default:
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return;
}
asrc = rte_pktmbuf_mtod_offset(m_asrc, uint8_t *,
op->sym->auth.data.offset);
switch (sess->auth.mode) {
case ARMV8_CRYPTO_AUTH_AS_AUTH:
/* Nothing to do here, just verify correct option */
break;
case ARMV8_CRYPTO_AUTH_AS_HMAC:
arg.digest.hmac.key = sess->auth.hmac.key;
arg.digest.hmac.i_key_pad = sess->auth.hmac.i_key_pad;
arg.digest.hmac.o_key_pad = sess->auth.hmac.o_key_pad;
break;
default:
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return;
}
if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE) {
adst = op->sym->auth.digest.data;
if (adst == NULL) {
adst = rte_pktmbuf_mtod_offset(m_adst,
uint8_t *,
op->sym->auth.data.offset +
op->sym->auth.data.length);
}
} else {
adst = qp->temp_digest;
}
arg.cipher.iv = rte_crypto_op_ctod_offset(op, uint8_t *,
sess->cipher.iv.offset);
arg.cipher.key = sess->cipher.key.data;
/* Acquire combined mode function */
crypto_func = sess->crypto_func;
ARMV8_CRYPTO_ASSERT(crypto_func != NULL);
error = crypto_func(csrc, cdst, clen, asrc, adst, alen, &arg);
if (error != 0) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
return;
}
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
if (memcmp(adst, op->sym->auth.digest.data,
sess->auth.digest_length) != 0) {
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
}
}
}
/** Process crypto operation for mbuf */
static inline int
process_op(struct armv8_crypto_qp *qp, struct rte_crypto_op *op,
struct armv8_crypto_session *sess)
{
struct rte_mbuf *msrc, *mdst;
msrc = op->sym->m_src;
mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
switch (sess->chain_order) {
case ARMV8_CRYPTO_CHAIN_CIPHER_AUTH:
case ARMV8_CRYPTO_CHAIN_AUTH_CIPHER: /* Fall through */
process_armv8_chained_op(qp, op, sess, msrc, mdst);
break;
default:
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
break;
}
/* Free session if a session-less crypto op */
if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
memset(sess, 0, sizeof(struct armv8_crypto_session));
memset(op->sym->session, 0,
rte_cryptodev_get_header_session_size());
rte_mempool_put(qp->sess_mp, sess);
rte_mempool_put(qp->sess_mp, op->sym->session);
op->sym->session = NULL;
}
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
if (unlikely(op->status == RTE_CRYPTO_OP_STATUS_ERROR))
return -1;
return 0;
}
/*
*------------------------------------------------------------------------------
* PMD Framework
*------------------------------------------------------------------------------
*/
/** Enqueue burst */
static uint16_t
armv8_crypto_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct armv8_crypto_session *sess;
struct armv8_crypto_qp *qp = queue_pair;
int i, retval;
for (i = 0; i < nb_ops; i++) {
sess = get_session(qp, ops[i]);
if (unlikely(sess == NULL))
goto enqueue_err;
retval = process_op(qp, ops[i], sess);
if (unlikely(retval < 0))
goto enqueue_err;
}
retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
NULL);
qp->stats.enqueued_count += retval;
return retval;
enqueue_err:
retval = rte_ring_enqueue_burst(qp->processed_ops, (void *)ops, i,
NULL);
if (ops[i] != NULL)
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
qp->stats.enqueue_err_count++;
return retval;
}
/** Dequeue burst */
static uint16_t
armv8_crypto_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct armv8_crypto_qp *qp = queue_pair;
unsigned int nb_dequeued = 0;
nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
(void **)ops, nb_ops, NULL);
qp->stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
/** Create ARMv8 crypto device */
static int
cryptodev_armv8_crypto_create(const char *name,
struct rte_vdev_device *vdev,
struct rte_cryptodev_pmd_init_params *init_params)
{
struct rte_cryptodev *dev;
struct armv8_crypto_private *internals;
/* Check CPU for support for AES instruction set */
if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
ARMV8_CRYPTO_LOG_ERR(
"AES instructions not supported by CPU");
return -EFAULT;
}
/* Check CPU for support for SHA instruction set */
if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA1) ||
!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SHA2)) {
ARMV8_CRYPTO_LOG_ERR(
"SHA1/SHA2 instructions not supported by CPU");
return -EFAULT;
}
/* Check CPU for support for Advance SIMD instruction set */
if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON)) {
ARMV8_CRYPTO_LOG_ERR(
"Advanced SIMD instructions not supported by CPU");
return -EFAULT;
}
dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
if (dev == NULL) {
ARMV8_CRYPTO_LOG_ERR("failed to create cryptodev vdev");
goto init_error;
}
dev->driver_id = cryptodev_driver_id;
dev->dev_ops = rte_armv8_crypto_pmd_ops;
/* register rx/tx burst functions for data path */
dev->dequeue_burst = armv8_crypto_pmd_dequeue_burst;
dev->enqueue_burst = armv8_crypto_pmd_enqueue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_CPU_NEON |
RTE_CRYPTODEV_FF_CPU_ARM_CE;
/* Set vector instructions mode supported */
internals = dev->data->dev_private;
internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
internals->max_nb_sessions = init_params->max_nb_sessions;
return 0;
init_error:
ARMV8_CRYPTO_LOG_ERR(
"driver %s: cryptodev_armv8_crypto_create failed",
init_params->name);
cryptodev_armv8_crypto_uninit(vdev);
return -EFAULT;
}
/** Initialise ARMv8 crypto device */
static int
cryptodev_armv8_crypto_init(struct rte_vdev_device *vdev)
{
struct rte_cryptodev_pmd_init_params init_params = {
"",
sizeof(struct armv8_crypto_private),
rte_socket_id(),
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS,
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_SESSIONS
};
const char *name;
const char *input_args;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
input_args = rte_vdev_device_args(vdev);
rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
return cryptodev_armv8_crypto_create(name, vdev, &init_params);
}
/** Uninitialise ARMv8 crypto device */
static int
cryptodev_armv8_crypto_uninit(struct rte_vdev_device *vdev)
{
struct rte_cryptodev *cryptodev;
const char *name;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
RTE_LOG(INFO, PMD,
"Closing ARMv8 crypto device %s on numa socket %u\n",
name, rte_socket_id());
cryptodev = rte_cryptodev_pmd_get_named_dev(name);
if (cryptodev == NULL)
return -ENODEV;
return rte_cryptodev_pmd_destroy(cryptodev);
}
static struct rte_vdev_driver armv8_crypto_pmd_drv = {
.probe = cryptodev_armv8_crypto_init,
.remove = cryptodev_armv8_crypto_uninit
};
static struct cryptodev_driver armv8_crypto_drv;
RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_ARMV8_PMD, armv8_crypto_pmd_drv);
RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_ARMV8_PMD, cryptodev_armv8_pmd);
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_ARMV8_PMD,
"max_nb_queue_pairs=<int> "
"max_nb_sessions=<int> "
"socket_id=<int>");
RTE_PMD_REGISTER_CRYPTO_DRIVER(armv8_crypto_drv, armv8_crypto_pmd_drv,
cryptodev_driver_id);