f-stack/freebsd/contrib/zstd/programs/benchzstd.c

889 lines
35 KiB
C
Raw Permalink Normal View History

/*
* Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* **************************************
* Tuning parameters
****************************************/
#ifndef BMK_TIMETEST_DEFAULT_S /* default minimum time per test */
#define BMK_TIMETEST_DEFAULT_S 3
#endif
/* *************************************
* Includes
***************************************/
#include "platform.h" /* Large Files support */
#include "util.h" /* UTIL_getFileSize, UTIL_sleep */
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memset, strerror */
#include <stdio.h> /* fprintf, fopen */
#include <errno.h>
#include <assert.h> /* assert */
#include "timefn.h" /* UTIL_time_t */
#include "benchfn.h"
#include "../lib/common/mem.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "../lib/zstd.h"
#include "datagen.h" /* RDG_genBuffer */
#include "../lib/common/xxhash.h"
#include "benchzstd.h"
#include "../lib/common/zstd_errors.h"
/* *************************************
* Constants
***************************************/
#ifndef ZSTD_GIT_COMMIT
# define ZSTD_GIT_COMMIT_STRING ""
#else
# define ZSTD_GIT_COMMIT_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_GIT_COMMIT)
#endif
#define TIMELOOP_MICROSEC (1*1000000ULL) /* 1 second */
#define TIMELOOP_NANOSEC (1*1000000000ULL) /* 1 second */
#define ACTIVEPERIOD_MICROSEC (70*TIMELOOP_MICROSEC) /* 70 seconds */
#define COOLPERIOD_SEC 10
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BMK_RUNTEST_DEFAULT_MS 1000
static const size_t maxMemory = (sizeof(size_t)==4) ?
/* 32-bit */ (2 GB - 64 MB) :
/* 64-bit */ (size_t)(1ULL << ((sizeof(size_t)*8)-31));
/* *************************************
* console display
***************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (displayLevel>=l) { DISPLAY(__VA_ARGS__); }
/* 0 : no display; 1: errors; 2 : + result + interaction + warnings; 3 : + progression; 4 : + information */
static const U64 g_refreshRate = SEC_TO_MICRO / 6;
static UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER;
#define DISPLAYUPDATE(l, ...) { if (displayLevel>=l) { \
if ((UTIL_clockSpanMicro(g_displayClock) > g_refreshRate) || (displayLevel>=4)) \
{ g_displayClock = UTIL_getTime(); DISPLAY(__VA_ARGS__); \
if (displayLevel>=4) fflush(stderr); } } }
/* *************************************
* Exceptions
***************************************/
#ifndef DEBUG
# define DEBUG 0
#endif
#define DEBUGOUTPUT(...) { if (DEBUG) DISPLAY(__VA_ARGS__); }
#define RETURN_ERROR_INT(errorNum, ...) { \
DEBUGOUTPUT("%s: %i: \n", __FILE__, __LINE__); \
DISPLAYLEVEL(1, "Error %i : ", errorNum); \
DISPLAYLEVEL(1, __VA_ARGS__); \
DISPLAYLEVEL(1, " \n"); \
return errorNum; \
}
#define CHECK_Z(zf) { \
size_t const zerr = zf; \
if (ZSTD_isError(zerr)) { \
DEBUGOUTPUT("%s: %i: \n", __FILE__, __LINE__); \
DISPLAY("Error : "); \
DISPLAY("%s failed : %s", \
#zf, ZSTD_getErrorName(zerr)); \
DISPLAY(" \n"); \
exit(1); \
} \
}
#define RETURN_ERROR(errorNum, retType, ...) { \
retType r; \
memset(&r, 0, sizeof(retType)); \
DEBUGOUTPUT("%s: %i: \n", __FILE__, __LINE__); \
DISPLAYLEVEL(1, "Error %i : ", errorNum); \
DISPLAYLEVEL(1, __VA_ARGS__); \
DISPLAYLEVEL(1, " \n"); \
r.tag = errorNum; \
return r; \
}
/* *************************************
* Benchmark Parameters
***************************************/
BMK_advancedParams_t BMK_initAdvancedParams(void) {
BMK_advancedParams_t const res = {
BMK_both, /* mode */
BMK_TIMETEST_DEFAULT_S, /* nbSeconds */
0, /* blockSize */
0, /* nbWorkers */
0, /* realTime */
0, /* additionalParam */
0, /* ldmFlag */
0, /* ldmMinMatch */
0, /* ldmHashLog */
0, /* ldmBuckSizeLog */
0, /* ldmHashRateLog */
ZSTD_lcm_auto /* literalCompressionMode */
};
return res;
}
/* ********************************************************
* Bench functions
**********************************************************/
typedef struct {
const void* srcPtr;
size_t srcSize;
void* cPtr;
size_t cRoom;
size_t cSize;
void* resPtr;
size_t resSize;
} blockParam_t;
#undef MIN
#undef MAX
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
static void
BMK_initCCtx(ZSTD_CCtx* ctx,
const void* dictBuffer, size_t dictBufferSize,
int cLevel,
const ZSTD_compressionParameters* comprParams,
const BMK_advancedParams_t* adv)
{
ZSTD_CCtx_reset(ctx, ZSTD_reset_session_and_parameters);
if (adv->nbWorkers==1) {
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_nbWorkers, 0));
} else {
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_nbWorkers, adv->nbWorkers));
}
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_compressionLevel, cLevel));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_enableLongDistanceMatching, adv->ldmFlag));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_ldmMinMatch, adv->ldmMinMatch));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_ldmHashLog, adv->ldmHashLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_ldmBucketSizeLog, adv->ldmBucketSizeLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_ldmHashRateLog, adv->ldmHashRateLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_windowLog, (int)comprParams->windowLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_hashLog, (int)comprParams->hashLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_chainLog, (int)comprParams->chainLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_searchLog, (int)comprParams->searchLog));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_minMatch, (int)comprParams->minMatch));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_targetLength, (int)comprParams->targetLength));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_literalCompressionMode, (int)adv->literalCompressionMode));
CHECK_Z(ZSTD_CCtx_setParameter(ctx, ZSTD_c_strategy, comprParams->strategy));
CHECK_Z(ZSTD_CCtx_loadDictionary(ctx, dictBuffer, dictBufferSize));
}
static void BMK_initDCtx(ZSTD_DCtx* dctx,
const void* dictBuffer, size_t dictBufferSize) {
CHECK_Z(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_and_parameters));
CHECK_Z(ZSTD_DCtx_loadDictionary(dctx, dictBuffer, dictBufferSize));
}
typedef struct {
ZSTD_CCtx* cctx;
const void* dictBuffer;
size_t dictBufferSize;
int cLevel;
const ZSTD_compressionParameters* comprParams;
const BMK_advancedParams_t* adv;
} BMK_initCCtxArgs;
static size_t local_initCCtx(void* payload) {
BMK_initCCtxArgs* ag = (BMK_initCCtxArgs*)payload;
BMK_initCCtx(ag->cctx, ag->dictBuffer, ag->dictBufferSize, ag->cLevel, ag->comprParams, ag->adv);
return 0;
}
typedef struct {
ZSTD_DCtx* dctx;
const void* dictBuffer;
size_t dictBufferSize;
} BMK_initDCtxArgs;
static size_t local_initDCtx(void* payload) {
BMK_initDCtxArgs* ag = (BMK_initDCtxArgs*)payload;
BMK_initDCtx(ag->dctx, ag->dictBuffer, ag->dictBufferSize);
return 0;
}
/* `addArgs` is the context */
static size_t local_defaultCompress(
const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstSize,
void* addArgs)
{
ZSTD_CCtx* const cctx = (ZSTD_CCtx*)addArgs;
return ZSTD_compress2(cctx, dstBuffer, dstSize, srcBuffer, srcSize);
}
/* `addArgs` is the context */
static size_t local_defaultDecompress(
const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstCapacity,
void* addArgs)
{
size_t moreToFlush = 1;
ZSTD_DCtx* const dctx = (ZSTD_DCtx*)addArgs;
ZSTD_inBuffer in;
ZSTD_outBuffer out;
in.src = srcBuffer; in.size = srcSize; in.pos = 0;
out.dst = dstBuffer; out.size = dstCapacity; out.pos = 0;
while (moreToFlush) {
if(out.pos == out.size) {
return (size_t)-ZSTD_error_dstSize_tooSmall;
}
moreToFlush = ZSTD_decompressStream(dctx, &out, &in);
if (ZSTD_isError(moreToFlush)) {
return moreToFlush;
}
}
return out.pos;
}
/* ================================================================= */
/* Benchmark Zstandard, mem-to-mem scenarios */
/* ================================================================= */
int BMK_isSuccessful_benchOutcome(BMK_benchOutcome_t outcome)
{
return outcome.tag == 0;
}
BMK_benchResult_t BMK_extract_benchResult(BMK_benchOutcome_t outcome)
{
assert(outcome.tag == 0);
return outcome.internal_never_use_directly;
}
static BMK_benchOutcome_t BMK_benchOutcome_error(void)
{
BMK_benchOutcome_t b;
memset(&b, 0, sizeof(b));
b.tag = 1;
return b;
}
static BMK_benchOutcome_t BMK_benchOutcome_setValidResult(BMK_benchResult_t result)
{
BMK_benchOutcome_t b;
b.tag = 0;
b.internal_never_use_directly = result;
return b;
}
/* benchMem with no allocation */
static BMK_benchOutcome_t
BMK_benchMemAdvancedNoAlloc(
const void** srcPtrs, size_t* srcSizes,
void** cPtrs, size_t* cCapacities, size_t* cSizes,
void** resPtrs, size_t* resSizes,
void** resultBufferPtr, void* compressedBuffer,
size_t maxCompressedSize,
BMK_timedFnState_t* timeStateCompress,
BMK_timedFnState_t* timeStateDecompress,
const void* srcBuffer, size_t srcSize,
const size_t* fileSizes, unsigned nbFiles,
const int cLevel,
const ZSTD_compressionParameters* comprParams,
const void* dictBuffer, size_t dictBufferSize,
ZSTD_CCtx* cctx, ZSTD_DCtx* dctx,
int displayLevel, const char* displayName,
const BMK_advancedParams_t* adv)
{
size_t const blockSize = ((adv->blockSize>=32 && (adv->mode != BMK_decodeOnly)) ? adv->blockSize : srcSize) + (!srcSize); /* avoid div by 0 */
BMK_benchResult_t benchResult;
size_t const loadedCompressedSize = srcSize;
size_t cSize = 0;
double ratio = 0.;
U32 nbBlocks;
assert(cctx != NULL); assert(dctx != NULL);
/* init */
memset(&benchResult, 0, sizeof(benchResult));
if (strlen(displayName)>17) displayName += strlen(displayName) - 17; /* display last 17 characters */
if (adv->mode == BMK_decodeOnly) { /* benchmark only decompression : source must be already compressed */
const char* srcPtr = (const char*)srcBuffer;
U64 totalDSize64 = 0;
U32 fileNb;
for (fileNb=0; fileNb<nbFiles; fileNb++) {
U64 const fSize64 = ZSTD_findDecompressedSize(srcPtr, fileSizes[fileNb]);
if (fSize64==0) RETURN_ERROR(32, BMK_benchOutcome_t, "Impossible to determine original size ");
totalDSize64 += fSize64;
srcPtr += fileSizes[fileNb];
}
{ size_t const decodedSize = (size_t)totalDSize64;
assert((U64)decodedSize == totalDSize64); /* check overflow */
free(*resultBufferPtr);
*resultBufferPtr = malloc(decodedSize);
if (!(*resultBufferPtr)) {
RETURN_ERROR(33, BMK_benchOutcome_t, "not enough memory");
}
if (totalDSize64 > decodedSize) { /* size_t overflow */
free(*resultBufferPtr);
RETURN_ERROR(32, BMK_benchOutcome_t, "original size is too large");
}
cSize = srcSize;
srcSize = decodedSize;
ratio = (double)srcSize / (double)cSize;
}
}
/* Init data blocks */
{ const char* srcPtr = (const char*)srcBuffer;
char* cPtr = (char*)compressedBuffer;
char* resPtr = (char*)(*resultBufferPtr);
U32 fileNb;
for (nbBlocks=0, fileNb=0; fileNb<nbFiles; fileNb++) {
size_t remaining = fileSizes[fileNb];
U32 const nbBlocksforThisFile = (adv->mode == BMK_decodeOnly) ? 1 : (U32)((remaining + (blockSize-1)) / blockSize);
U32 const blockEnd = nbBlocks + nbBlocksforThisFile;
for ( ; nbBlocks<blockEnd; nbBlocks++) {
size_t const thisBlockSize = MIN(remaining, blockSize);
srcPtrs[nbBlocks] = srcPtr;
srcSizes[nbBlocks] = thisBlockSize;
cPtrs[nbBlocks] = cPtr;
cCapacities[nbBlocks] = (adv->mode == BMK_decodeOnly) ? thisBlockSize : ZSTD_compressBound(thisBlockSize);
resPtrs[nbBlocks] = resPtr;
resSizes[nbBlocks] = (adv->mode == BMK_decodeOnly) ? (size_t) ZSTD_findDecompressedSize(srcPtr, thisBlockSize) : thisBlockSize;
srcPtr += thisBlockSize;
cPtr += cCapacities[nbBlocks];
resPtr += thisBlockSize;
remaining -= thisBlockSize;
if (adv->mode == BMK_decodeOnly) {
cSizes[nbBlocks] = thisBlockSize;
benchResult.cSize = thisBlockSize;
}
}
}
}
/* warming up `compressedBuffer` */
if (adv->mode == BMK_decodeOnly) {
memcpy(compressedBuffer, srcBuffer, loadedCompressedSize);
} else {
RDG_genBuffer(compressedBuffer, maxCompressedSize, 0.10, 0.50, 1);
}
/* Bench */
{ U64 const crcOrig = (adv->mode == BMK_decodeOnly) ? 0 : XXH64(srcBuffer, srcSize, 0);
# define NB_MARKS 4
const char* marks[NB_MARKS] = { " |", " /", " =", " \\" };
U32 markNb = 0;
int compressionCompleted = (adv->mode == BMK_decodeOnly);
int decompressionCompleted = (adv->mode == BMK_compressOnly);
BMK_benchParams_t cbp, dbp;
BMK_initCCtxArgs cctxprep;
BMK_initDCtxArgs dctxprep;
cbp.benchFn = local_defaultCompress; /* ZSTD_compress2 */
cbp.benchPayload = cctx;
cbp.initFn = local_initCCtx; /* BMK_initCCtx */
cbp.initPayload = &cctxprep;
cbp.errorFn = ZSTD_isError;
cbp.blockCount = nbBlocks;
cbp.srcBuffers = srcPtrs;
cbp.srcSizes = srcSizes;
cbp.dstBuffers = cPtrs;
cbp.dstCapacities = cCapacities;
cbp.blockResults = cSizes;
cctxprep.cctx = cctx;
cctxprep.dictBuffer = dictBuffer;
cctxprep.dictBufferSize = dictBufferSize;
cctxprep.cLevel = cLevel;
cctxprep.comprParams = comprParams;
cctxprep.adv = adv;
dbp.benchFn = local_defaultDecompress;
dbp.benchPayload = dctx;
dbp.initFn = local_initDCtx;
dbp.initPayload = &dctxprep;
dbp.errorFn = ZSTD_isError;
dbp.blockCount = nbBlocks;
dbp.srcBuffers = (const void* const *) cPtrs;
dbp.srcSizes = cSizes;
dbp.dstBuffers = resPtrs;
dbp.dstCapacities = resSizes;
dbp.blockResults = NULL;
dctxprep.dctx = dctx;
dctxprep.dictBuffer = dictBuffer;
dctxprep.dictBufferSize = dictBufferSize;
DISPLAYLEVEL(2, "\r%70s\r", ""); /* blank line */
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->\r", marks[markNb], displayName, (unsigned)srcSize);
while (!(compressionCompleted && decompressionCompleted)) {
if (!compressionCompleted) {
BMK_runOutcome_t const cOutcome = BMK_benchTimedFn( timeStateCompress, cbp);
if (!BMK_isSuccessful_runOutcome(cOutcome)) {
return BMK_benchOutcome_error();
}
{ BMK_runTime_t const cResult = BMK_extract_runTime(cOutcome);
cSize = cResult.sumOfReturn;
ratio = (double)srcSize / cSize;
{ BMK_benchResult_t newResult;
newResult.cSpeed = (U64)((double)srcSize * TIMELOOP_NANOSEC / cResult.nanoSecPerRun);
benchResult.cSize = cSize;
if (newResult.cSpeed > benchResult.cSpeed)
benchResult.cSpeed = newResult.cSpeed;
} }
{ int const ratioAccuracy = (ratio < 10.) ? 3 : 2;
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.*f),%6.*f MB/s\r",
marks[markNb], displayName,
(unsigned)srcSize, (unsigned)cSize,
ratioAccuracy, ratio,
benchResult.cSpeed < (10 MB) ? 2 : 1, (double)benchResult.cSpeed / MB_UNIT);
}
compressionCompleted = BMK_isCompleted_TimedFn(timeStateCompress);
}
if(!decompressionCompleted) {
BMK_runOutcome_t const dOutcome = BMK_benchTimedFn(timeStateDecompress, dbp);
if(!BMK_isSuccessful_runOutcome(dOutcome)) {
return BMK_benchOutcome_error();
}
{ BMK_runTime_t const dResult = BMK_extract_runTime(dOutcome);
U64 const newDSpeed = (U64)((double)srcSize * TIMELOOP_NANOSEC / dResult.nanoSecPerRun);
if (newDSpeed > benchResult.dSpeed)
benchResult.dSpeed = newDSpeed;
}
{ int const ratioAccuracy = (ratio < 10.) ? 3 : 2;
DISPLAYLEVEL(2, "%2s-%-17.17s :%10u ->%10u (%5.*f),%6.*f MB/s ,%6.1f MB/s \r",
marks[markNb], displayName,
(unsigned)srcSize, (unsigned)cSize,
ratioAccuracy, ratio,
benchResult.cSpeed < (10 MB) ? 2 : 1, (double)benchResult.cSpeed / MB_UNIT,
(double)benchResult.dSpeed / MB_UNIT);
}
decompressionCompleted = BMK_isCompleted_TimedFn(timeStateDecompress);
}
markNb = (markNb+1) % NB_MARKS;
} /* while (!(compressionCompleted && decompressionCompleted)) */
/* CRC Checking */
{ const BYTE* resultBuffer = (const BYTE*)(*resultBufferPtr);
U64 const crcCheck = XXH64(resultBuffer, srcSize, 0);
if ((adv->mode == BMK_both) && (crcOrig!=crcCheck)) {
size_t u;
DISPLAY("!!! WARNING !!! %14s : Invalid Checksum : %x != %x \n",
displayName, (unsigned)crcOrig, (unsigned)crcCheck);
for (u=0; u<srcSize; u++) {
if (((const BYTE*)srcBuffer)[u] != resultBuffer[u]) {
unsigned segNb, bNb, pos;
size_t bacc = 0;
DISPLAY("Decoding error at pos %u ", (unsigned)u);
for (segNb = 0; segNb < nbBlocks; segNb++) {
if (bacc + srcSizes[segNb] > u) break;
bacc += srcSizes[segNb];
}
pos = (U32)(u - bacc);
bNb = pos / (128 KB);
DISPLAY("(sample %u, block %u, pos %u) \n", segNb, bNb, pos);
{ size_t const lowest = (u>5) ? 5 : u;
size_t n;
DISPLAY("origin: ");
for (n=lowest; n>0; n--)
DISPLAY("%02X ", ((const BYTE*)srcBuffer)[u-n]);
DISPLAY(" :%02X: ", ((const BYTE*)srcBuffer)[u]);
for (n=1; n<3; n++)
DISPLAY("%02X ", ((const BYTE*)srcBuffer)[u+n]);
DISPLAY(" \n");
DISPLAY("decode: ");
for (n=lowest; n>0; n++)
DISPLAY("%02X ", resultBuffer[u-n]);
DISPLAY(" :%02X: ", resultBuffer[u]);
for (n=1; n<3; n++)
DISPLAY("%02X ", resultBuffer[u+n]);
DISPLAY(" \n");
}
break;
}
if (u==srcSize-1) { /* should never happen */
DISPLAY("no difference detected\n");
}
} /* for (u=0; u<srcSize; u++) */
} /* if ((adv->mode == BMK_both) && (crcOrig!=crcCheck)) */
} /* CRC Checking */
if (displayLevel == 1) { /* hidden display mode -q, used by python speed benchmark */
double const cSpeed = (double)benchResult.cSpeed / MB_UNIT;
double const dSpeed = (double)benchResult.dSpeed / MB_UNIT;
if (adv->additionalParam) {
DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s (param=%d)\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName, adv->additionalParam);
} else {
DISPLAY("-%-3i%11i (%5.3f) %6.2f MB/s %6.1f MB/s %s\n", cLevel, (int)cSize, ratio, cSpeed, dSpeed, displayName);
}
}
DISPLAYLEVEL(2, "%2i#\n", cLevel);
} /* Bench */
benchResult.cMem = (1ULL << (comprParams->windowLog)) + ZSTD_sizeof_CCtx(cctx);
return BMK_benchOutcome_setValidResult(benchResult);
}
BMK_benchOutcome_t BMK_benchMemAdvanced(const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstCapacity,
const size_t* fileSizes, unsigned nbFiles,
int cLevel, const ZSTD_compressionParameters* comprParams,
const void* dictBuffer, size_t dictBufferSize,
int displayLevel, const char* displayName, const BMK_advancedParams_t* adv)
{
int const dstParamsError = !dstBuffer ^ !dstCapacity; /* must be both NULL or none */
size_t const blockSize = ((adv->blockSize>=32 && (adv->mode != BMK_decodeOnly)) ? adv->blockSize : srcSize) + (!srcSize) /* avoid div by 0 */ ;
U32 const maxNbBlocks = (U32) ((srcSize + (blockSize-1)) / blockSize) + nbFiles;
/* these are the blockTable parameters, just split up */
const void ** const srcPtrs = (const void**)malloc(maxNbBlocks * sizeof(void*));
size_t* const srcSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
void ** const cPtrs = (void**)malloc(maxNbBlocks * sizeof(void*));
size_t* const cSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
size_t* const cCapacities = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
void ** const resPtrs = (void**)malloc(maxNbBlocks * sizeof(void*));
size_t* const resSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
BMK_timedFnState_t* timeStateCompress = BMK_createTimedFnState(adv->nbSeconds * 1000, BMK_RUNTEST_DEFAULT_MS);
BMK_timedFnState_t* timeStateDecompress = BMK_createTimedFnState(adv->nbSeconds * 1000, BMK_RUNTEST_DEFAULT_MS);
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
const size_t maxCompressedSize = dstCapacity ? dstCapacity : ZSTD_compressBound(srcSize) + (maxNbBlocks * 1024);
void* const internalDstBuffer = dstBuffer ? NULL : malloc(maxCompressedSize);
void* const compressedBuffer = dstBuffer ? dstBuffer : internalDstBuffer;
BMK_benchOutcome_t outcome = BMK_benchOutcome_error(); /* error by default */
void* resultBuffer = srcSize ? malloc(srcSize) : NULL;
int allocationincomplete = !srcPtrs || !srcSizes || !cPtrs ||
!cSizes || !cCapacities || !resPtrs || !resSizes ||
!timeStateCompress || !timeStateDecompress ||
!cctx || !dctx ||
!compressedBuffer || !resultBuffer;
if (!allocationincomplete && !dstParamsError) {
outcome = BMK_benchMemAdvancedNoAlloc(srcPtrs, srcSizes,
cPtrs, cCapacities, cSizes,
resPtrs, resSizes,
&resultBuffer,
compressedBuffer, maxCompressedSize,
timeStateCompress, timeStateDecompress,
srcBuffer, srcSize,
fileSizes, nbFiles,
cLevel, comprParams,
dictBuffer, dictBufferSize,
cctx, dctx,
displayLevel, displayName, adv);
}
/* clean up */
BMK_freeTimedFnState(timeStateCompress);
BMK_freeTimedFnState(timeStateDecompress);
ZSTD_freeCCtx(cctx);
ZSTD_freeDCtx(dctx);
free(internalDstBuffer);
free(resultBuffer);
free((void*)srcPtrs);
free(srcSizes);
free(cPtrs);
free(cSizes);
free(cCapacities);
free(resPtrs);
free(resSizes);
if(allocationincomplete) {
RETURN_ERROR(31, BMK_benchOutcome_t, "allocation error : not enough memory");
}
if(dstParamsError) {
RETURN_ERROR(32, BMK_benchOutcome_t, "Dst parameters not coherent");
}
return outcome;
}
BMK_benchOutcome_t BMK_benchMem(const void* srcBuffer, size_t srcSize,
const size_t* fileSizes, unsigned nbFiles,
int cLevel, const ZSTD_compressionParameters* comprParams,
const void* dictBuffer, size_t dictBufferSize,
int displayLevel, const char* displayName) {
BMK_advancedParams_t const adv = BMK_initAdvancedParams();
return BMK_benchMemAdvanced(srcBuffer, srcSize,
NULL, 0,
fileSizes, nbFiles,
cLevel, comprParams,
dictBuffer, dictBufferSize,
displayLevel, displayName, &adv);
}
static BMK_benchOutcome_t BMK_benchCLevel(const void* srcBuffer, size_t benchedSize,
const size_t* fileSizes, unsigned nbFiles,
int cLevel, const ZSTD_compressionParameters* comprParams,
const void* dictBuffer, size_t dictBufferSize,
int displayLevel, const char* displayName,
BMK_advancedParams_t const * const adv)
{
const char* pch = strrchr(displayName, '\\'); /* Windows */
if (!pch) pch = strrchr(displayName, '/'); /* Linux */
if (pch) displayName = pch+1;
if (adv->realTime) {
DISPLAYLEVEL(2, "Note : switching to real-time priority \n");
SET_REALTIME_PRIORITY;
}
if (displayLevel == 1 && !adv->additionalParam) /* --quiet mode */
DISPLAY("bench %s %s: input %u bytes, %u seconds, %u KB blocks\n",
ZSTD_VERSION_STRING, ZSTD_GIT_COMMIT_STRING,
(unsigned)benchedSize, adv->nbSeconds, (unsigned)(adv->blockSize>>10));
return BMK_benchMemAdvanced(srcBuffer, benchedSize,
NULL, 0,
fileSizes, nbFiles,
cLevel, comprParams,
dictBuffer, dictBufferSize,
displayLevel, displayName, adv);
}
BMK_benchOutcome_t BMK_syntheticTest(int cLevel, double compressibility,
const ZSTD_compressionParameters* compressionParams,
int displayLevel, const BMK_advancedParams_t* adv)
{
char name[20] = {0};
size_t const benchedSize = 10000000;
void* srcBuffer;
BMK_benchOutcome_t res;
if (cLevel > ZSTD_maxCLevel()) {
RETURN_ERROR(15, BMK_benchOutcome_t, "Invalid Compression Level");
}
/* Memory allocation */
srcBuffer = malloc(benchedSize);
if (!srcBuffer) RETURN_ERROR(21, BMK_benchOutcome_t, "not enough memory");
/* Fill input buffer */
RDG_genBuffer(srcBuffer, benchedSize, compressibility, 0.0, 0);
/* Bench */
snprintf (name, sizeof(name), "Synthetic %2u%%", (unsigned)(compressibility*100));
res = BMK_benchCLevel(srcBuffer, benchedSize,
&benchedSize /* ? */, 1 /* ? */,
cLevel, compressionParams,
NULL, 0, /* dictionary */
displayLevel, name, adv);
/* clean up */
free(srcBuffer);
return res;
}
static size_t BMK_findMaxMem(U64 requiredMem)
{
size_t const step = 64 MB;
BYTE* testmem = NULL;
requiredMem = (((requiredMem >> 26) + 1) << 26);
requiredMem += step;
if (requiredMem > maxMemory) requiredMem = maxMemory;
do {
testmem = (BYTE*)malloc((size_t)requiredMem);
requiredMem -= step;
} while (!testmem && requiredMem > 0);
free(testmem);
return (size_t)(requiredMem);
}
/*! BMK_loadFiles() :
* Loads `buffer` with content of files listed within `fileNamesTable`.
* At most, fills `buffer` entirely. */
static int BMK_loadFiles(void* buffer, size_t bufferSize,
size_t* fileSizes,
const char* const * fileNamesTable, unsigned nbFiles,
int displayLevel)
{
size_t pos = 0, totalSize = 0;
unsigned n;
for (n=0; n<nbFiles; n++) {
U64 fileSize = UTIL_getFileSize(fileNamesTable[n]); /* last file may be shortened */
if (UTIL_isDirectory(fileNamesTable[n])) {
DISPLAYLEVEL(2, "Ignoring %s directory... \n", fileNamesTable[n]);
fileSizes[n] = 0;
continue;
}
if (fileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAYLEVEL(2, "Cannot evaluate size of %s, ignoring ... \n", fileNamesTable[n]);
fileSizes[n] = 0;
continue;
}
{ FILE* const f = fopen(fileNamesTable[n], "rb");
if (f==NULL) RETURN_ERROR_INT(10, "impossible to open file %s", fileNamesTable[n]);
DISPLAYUPDATE(2, "Loading %s... \r", fileNamesTable[n]);
if (fileSize > bufferSize-pos) fileSize = bufferSize-pos, nbFiles=n; /* buffer too small - stop after this file */
{ size_t const readSize = fread(((char*)buffer)+pos, 1, (size_t)fileSize, f);
if (readSize != (size_t)fileSize) RETURN_ERROR_INT(11, "could not read %s", fileNamesTable[n]);
pos += readSize;
}
fileSizes[n] = (size_t)fileSize;
totalSize += (size_t)fileSize;
fclose(f);
} }
if (totalSize == 0) RETURN_ERROR_INT(12, "no data to bench");
return 0;
}
BMK_benchOutcome_t BMK_benchFilesAdvanced(
const char* const * fileNamesTable, unsigned nbFiles,
const char* dictFileName, int cLevel,
const ZSTD_compressionParameters* compressionParams,
int displayLevel, const BMK_advancedParams_t* adv)
{
void* srcBuffer = NULL;
size_t benchedSize;
void* dictBuffer = NULL;
size_t dictBufferSize = 0;
size_t* fileSizes = NULL;
BMK_benchOutcome_t res;
U64 const totalSizeToLoad = UTIL_getTotalFileSize(fileNamesTable, nbFiles);
if (!nbFiles) {
RETURN_ERROR(14, BMK_benchOutcome_t, "No Files to Benchmark");
}
if (cLevel > ZSTD_maxCLevel()) {
RETURN_ERROR(15, BMK_benchOutcome_t, "Invalid Compression Level");
}
fileSizes = (size_t*)calloc(nbFiles, sizeof(size_t));
if (!fileSizes) RETURN_ERROR(12, BMK_benchOutcome_t, "not enough memory for fileSizes");
/* Load dictionary */
if (dictFileName != NULL) {
U64 const dictFileSize = UTIL_getFileSize(dictFileName);
if (dictFileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAYLEVEL(1, "error loading %s : %s \n", dictFileName, strerror(errno));
free(fileSizes);
RETURN_ERROR(9, BMK_benchOutcome_t, "benchmark aborted");
}
if (dictFileSize > 64 MB) {
free(fileSizes);
RETURN_ERROR(10, BMK_benchOutcome_t, "dictionary file %s too large", dictFileName);
}
dictBufferSize = (size_t)dictFileSize;
dictBuffer = malloc(dictBufferSize);
if (dictBuffer==NULL) {
free(fileSizes);
RETURN_ERROR(11, BMK_benchOutcome_t, "not enough memory for dictionary (%u bytes)",
(unsigned)dictBufferSize);
}
{ int const errorCode = BMK_loadFiles(dictBuffer, dictBufferSize,
fileSizes, &dictFileName /*?*/,
1 /*?*/, displayLevel);
if (errorCode) {
res = BMK_benchOutcome_error();
goto _cleanUp;
} }
}
/* Memory allocation & restrictions */
benchedSize = BMK_findMaxMem(totalSizeToLoad * 3) / 3;
if ((U64)benchedSize > totalSizeToLoad) benchedSize = (size_t)totalSizeToLoad;
if (benchedSize < totalSizeToLoad)
DISPLAY("Not enough memory; testing %u MB only...\n", (unsigned)(benchedSize >> 20));
srcBuffer = benchedSize ? malloc(benchedSize) : NULL;
if (!srcBuffer) {
free(dictBuffer);
free(fileSizes);
RETURN_ERROR(12, BMK_benchOutcome_t, "not enough memory");
}
/* Load input buffer */
{ int const errorCode = BMK_loadFiles(srcBuffer, benchedSize,
fileSizes, fileNamesTable, nbFiles,
displayLevel);
if (errorCode) {
res = BMK_benchOutcome_error();
goto _cleanUp;
} }
/* Bench */
{ char mfName[20] = {0};
snprintf (mfName, sizeof(mfName), " %u files", nbFiles);
{ const char* const displayName = (nbFiles > 1) ? mfName : fileNamesTable[0];
res = BMK_benchCLevel(srcBuffer, benchedSize,
fileSizes, nbFiles,
cLevel, compressionParams,
dictBuffer, dictBufferSize,
displayLevel, displayName,
adv);
} }
_cleanUp:
free(srcBuffer);
free(dictBuffer);
free(fileSizes);
return res;
}
BMK_benchOutcome_t BMK_benchFiles(
const char* const * fileNamesTable, unsigned nbFiles,
const char* dictFileName,
int cLevel, const ZSTD_compressionParameters* compressionParams,
int displayLevel)
{
BMK_advancedParams_t const adv = BMK_initAdvancedParams();
return BMK_benchFilesAdvanced(fileNamesTable, nbFiles, dictFileName, cLevel, compressionParams, displayLevel, &adv);
}