gps/GPSResources/tcpmp 0.73/amr/26204/enc_main.c

1417 lines
42 KiB
C
Raw Permalink Normal View History

2019-05-01 12:32:35 +00:00
/*
*===================================================================
* 3GPP AMR Wideband Floating-point Speech Codec
*===================================================================
*/
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <float.h>
#include <string.h>
#include <stdio.h>
#include "enc_dtx.h"
#include "enc_acelp.h"
#include "enc_lpc.h"
#include "enc_main.h"
#include "enc_gain.h"
#include "enc_util.h"
#ifdef WIN32
#pragma warning( disable : 4310)
#endif
#include "typedef.h"
#define MAX_16 (Word16)0x7fff
#define MIN_16 (Word16)0x8000
#define Q_MAX 8 /* scaling max for signal */
#define PREEMPH_FAC 0.68F /* preemphasis factor */
#define GAMMA1 0.92F /* Weighting factor (numerator) */
#define TILT_FAC 0.68F /* tilt factor (denominator) */
#define PIT_MIN 34 /* Minimum pitch lag with resolution 1/4 */
#define PIT_FR2 128 /* Minimum pitch lag with resolution 1/2 */
#define PIT_FR1_9b 160 /* Minimum pitch lag with resolution 1 */
#define PIT_FR1_8b 92 /* Minimum pitch lag with resolution 1 */
#define PIT_MAX 231 /* Maximum pitch lag */
#define L_INTERPOL (16+1) /* Length of filter for interpolation */
#define L_FRAME16k 320 /* Frame size at 16kHz */
#define L_SUBFR 64 /* Subframe size */
#define NB_SUBFR 4 /* Number of subframe per frame */
#define L_FILT 12 /* Delay of up-sampling filter */
#define L_NEXT 64 /* Overhead in LP analysis */
#define MODE_7k 0 /* modes */
#define MODE_9k 1
#define MODE_12k 2
#define MODE_14k 3
#define MODE_16k 4
#define MODE_18k 5
#define MODE_20k 6
#define MODE_23k 7
#define MODE_24k 8
#define MRDTX 9
extern const Word16 E_ROM_isp[];
extern const Word16 E_ROM_isf[];
extern const Word16 E_ROM_interpol_frac[];
/*
* E_MAIN_reset
*
* Parameters:
* st I/O: pointer to state structure
* reset_all I: perform full reset
*
* Function:
* Initialisation of variables for the coder section.
*
*
* Returns:
* void
*/
void E_MAIN_reset(void *st, Word16 reset_all)
{
Word32 i;
Coder_State *cod_state;
cod_state = (Coder_State *) st;
memset(cod_state->mem_exc, 0, (PIT_MAX + L_INTERPOL) * sizeof(Word16));
memset(cod_state->mem_isf_q, 0, M * sizeof(Word16));
memset(cod_state->mem_syn, 0, M * sizeof(Float32));
cod_state->mem_w0 = 0.0F;
cod_state->mem_tilt_code = 0;
cod_state->mem_first_frame = 1;
E_GAIN_clip_init(cod_state->mem_gp_clip);
cod_state->mem_gc_threshold = 0.0F;
if (reset_all != 0)
{
/* Set static vectors to zero */
memset(cod_state->mem_speech, 0, (L_TOTAL - L_FRAME) * sizeof(Float32));
memset(cod_state->mem_wsp, 0, (PIT_MAX / OPL_DECIM) * sizeof(Float32));
memset(cod_state->mem_decim2, 0, 3 * sizeof(Float32));
/* routines initialization */
memset(cod_state->mem_decim, 0, 2 * L_FILT16k * sizeof(Float32));
memset(cod_state->mem_sig_in, 0, 4 * sizeof(Float32));
E_ACELP_Gain2_Q_init(cod_state->mem_gain_q);
memset(cod_state->mem_hf_wsp, 0, 8 * sizeof(Float32));
/* isp initialization */
for (i = 0; i < M - 1; i++)
{
cod_state->mem_isp[i] =
(Float32)cos(3.141592654 * (Float32)(i + 1) / (Float32)M);
}
cod_state->mem_isp[M - 1] = 0.045F;
memcpy(cod_state->mem_isp_q, E_ROM_isp, M * sizeof(Word16));
/* variable initialization */
cod_state->mem_preemph = 0.0F;
cod_state->mem_wsp_df = 0.0F;
cod_state->mem_q = Q_MAX;
cod_state->mem_subfr_q[3] = Q_MAX;
cod_state->mem_subfr_q[2] = Q_MAX;
cod_state->mem_subfr_q[1] = Q_MAX;
cod_state->mem_subfr_q[0] = Q_MAX;
cod_state->mem_ada_w = 0.0F;
cod_state->mem_ol_gain = 0.0F;
cod_state->mem_ol_wght_flg = 0;
for (i = 0; i < 5; i++)
{
cod_state->mem_ol_lag[i] = 40;
}
cod_state->mem_T0_med = 40;
memset(cod_state->mem_hp_wsp, 0,
( ( L_FRAME / 2 ) / OPL_DECIM + ( PIT_MAX / OPL_DECIM ) )
* sizeof(Float32) );
memset(cod_state->mem_syn_hf, 0, M * sizeof(Float32));
memset(cod_state->mem_syn2, 0, M * sizeof(Float32));
memset(cod_state->mem_hp400, 0, 4 * sizeof(Float32));
memset(cod_state->mem_sig_out, 0, 4 * sizeof(Float32));
memset(cod_state->mem_hf, 0, 2 * L_FILT16k * sizeof(Float32));
memset(cod_state->mem_hf2, 0, 2 * L_FILT16k * sizeof(Float32));
memset(cod_state->mem_hf3, 0, 2 * L_FILT16k * sizeof(Float32));
memcpy(cod_state->mem_isf, E_ROM_isf, M * sizeof(Float32));
cod_state->mem_deemph = 0.0F;
cod_state->mem_seed = 21845;
cod_state->mem_gain_alpha = 1.0F;
cod_state->mem_vad_hist = 0;
E_DTX_reset(cod_state->dtx_encSt);
E_DTX_vad_reset(cod_state->vadSt);
}
}
/*
* E_MAIN_init
*
* Parameters:
* spe_state I/O: pointer to state structure
*
* Function:
* Initialisation of variables for the coder section.
* Memory allocation.
*
* Returns:
* void
*/
Word16 E_MAIN_init(void **spe_state)
{
Coder_State *st;
*spe_state = NULL;
/* allocate memory */
if ((st = (Coder_State *) malloc(sizeof(Coder_State))) == NULL)
{
return(-1);
}
st->vadSt = NULL;
st->dtx_encSt = NULL;
E_DTX_init(&(st->dtx_encSt));
E_DTX_vad_init(&(st->vadSt));
E_MAIN_reset((void *) st, 1);
*spe_state = (void*)st;
return(0);
}
/*
* E_MAIN_close
*
*
* Parameters:
* spe_state I: pointer to state structure
*
* Function:
* Free coder memory.
*
*
* Returns:
* void
*/
void E_MAIN_close(void **spe_state)
{
E_DTX_exit(&( ( (Coder_State *)(*spe_state) )->dtx_encSt));
E_DTX_vad_exit(&( ( (Coder_State *) (*spe_state) )->vadSt));
free(*spe_state);
return;
}
/*
* E_MAIN_parm_store
*
* Parameters:
* value I: parameter value
* prms O: output parameters
*
* Function:
* Store parameter values
*
* Returns:
* void
*/
static void E_MAIN_parm_store(Word32 value, Word16 **prms)
{
**prms = (Word16)value;
(*prms)++;
return;
}
/*
* E_MAIN_encode
*
* Parameters:
* mode I: used mode
* input_sp I: 320 new speech samples (at 16 kHz)
* prms O: output parameters
* spe_state B: state structure
* allow_dtx I: DTX ON/OFF
*
* Function:
* Main coder routine.
*
* Returns:
* void
*/
Word16 E_MAIN_encode(Word16 * mode, Word16 speech16k[], Word16 prms[],
void *spe_state, Word16 allow_dtx)
{
/* Float32 */
Float32 f_speech16k[L_FRAME16k]; /* Speech vector */
Float32 f_old_exc[(L_FRAME + 1) + PIT_MAX + L_INTERPOL]; /* Excitation vector */
Float32 f_exc2[L_FRAME]; /* excitation vector */
Float32 error[M + L_SUBFR]; /* error of quantization */
Float32 A[NB_SUBFR * (M + 1)]; /* A(z) unquantized for the 4 subframes */
Float32 Aq[NB_SUBFR * (M + 1)]; /* A(z) quantized for the 4 subframes */
Float32 xn[L_SUBFR]; /* Target vector for pitch search */
Float32 xn2[L_SUBFR]; /* Target vector for codebook search */
Float32 dn[L_SUBFR]; /* Correlation between xn2 and h1 */
Float32 cn[L_SUBFR]; /* Target vector in residual domain */
Float32 h1[L_SUBFR]; /* Impulse response vector */
Float32 f_code[L_SUBFR]; /* Fixed codebook excitation */
Float32 y1[L_SUBFR]; /* Filtered adaptive excitation */
Float32 y2[L_SUBFR]; /* Filtered adaptive excitation */
Float32 synth[L_SUBFR]; /* 12.8kHz synthesis vector */
Float32 r[M + 1]; /* Autocorrelations of windowed speech */
Float32 Ap[M + 1]; /* A(z) with spectral expansion */
Float32 ispnew[M]; /* immittance spectral pairs at 4nd sfr */
Float32 isf[M]; /* ISF (frequency domain) at 4nd sfr */
Float32 g_coeff[5], g_coeff2[2]; /* Correlations */
Float32 gain_pit;
Float32 f_tmp, gain1, gain2;
Float32 stab_fac = 0.0F, fac;
Float32 *new_speech, *speech; /* Speech vector */
Float32 *wsp; /* Weighted speech vector */
Float32 *f_exc; /* Excitation vector */
Float32 *p_A, *p_Aq; /* ptr to A(z) for the 4 subframes */
Float32 *f_pt_tmp;
/* Word32 */
Word32 indice[8]; /* quantization indices */
Word32 vad_flag, clip_gain;
Word32 T_op, T_op2, T0, T0_frac;
Word32 T0_min, T0_max;
Word32 voice_fac, Q_new = 0;
Word32 L_gain_code, l_tmp;
Word32 i, i_subfr, pit_flag;
/* Word16 */
Word16 exc2[L_FRAME]; /* excitation vector */
Word16 s_Aq[NB_SUBFR * (M + 1)]; /* A(z) quantized for the 4 subframes */
Word16 s_code[L_SUBFR]; /* Fixed codebook excitation */
Word16 ispnew_q[M]; /* quantized ISPs at 4nd subframe */
Word16 isfq[M]; /* quantized ISPs */
Word16 select, codec_mode;
Word16 index;
Word16 s_gain_pit, gain_code;
Word16 s_tmp, s_max;
Word16 corr_gain;
Word16 *exc; /* Excitation vector */
/* Other */
Coder_State *st; /* Coder states */
st = (Coder_State *)spe_state;
codec_mode = *mode;
/*
* Initialize pointers to speech vector.
*
*
* |-------|-------|-------|-------|-------|-------|
* past sp sf1 sf2 sf3 sf4 L_NEXT
* <------- Total speech buffer (L_TOTAL) ------>
* old_speech
* <------- LPC analysis window (L_WINDOW) ------>
* <-- present frame (L_FRAME) ---->
* | <----- new speech (L_FRAME) ---->
* | |
* speech |
* new_speech
*/
new_speech = st->mem_speech + L_TOTAL - L_FRAME - L_FILT; /* New speech */
speech = st->mem_speech + L_TOTAL - L_FRAME - L_NEXT; /* Present frame */
exc = st->mem_exc + PIT_MAX + L_INTERPOL;
f_exc = f_old_exc + PIT_MAX + L_INTERPOL;
wsp = st->mem_wsp + (PIT_MAX / OPL_DECIM);
for(i = 0; i < L_FRAME16k; i++)
{
f_speech16k[i] = (Float32)speech16k[i];
}
Q_new = -st->mem_q;
for(i = 0; i < (PIT_MAX + L_INTERPOL); i++)
{
f_old_exc[i] = (Float32)(st->mem_exc[i] * pow(2, Q_new));
}
/*
* Down sampling signal from 16kHz to 12.8kHz
*/
E_UTIL_decim_12k8(f_speech16k, L_FRAME16k, new_speech, st->mem_decim);
/* decimate with zero-padding to avoid delay of filter */
memcpy(f_code, st->mem_decim, 2 * L_FILT16k * sizeof(Float32));
memset(error, 0, L_FILT16k * sizeof(Float32));
E_UTIL_decim_12k8(error, L_FILT16k, new_speech + L_FRAME, f_code);
/*
* Perform 50Hz HP filtering of input signal.
* Perform fixed preemphasis through 1 - g z^-1
*/
E_UTIL_hp50_12k8(new_speech, L_FRAME, st->mem_sig_in);
memcpy(f_code, st->mem_sig_in, 4 * sizeof(Float32) );
E_UTIL_hp50_12k8(new_speech + L_FRAME, L_FILT, f_code);
E_UTIL_f_preemph(new_speech, PREEMPH_FAC, L_FRAME, &(st->mem_preemph));
/* last L_FILT samples for autocorrelation window */
f_tmp = st->mem_preemph;
E_UTIL_f_preemph(new_speech + L_FRAME, PREEMPH_FAC, L_FILT, &f_tmp);
/*
* Call VAD
* Preemphesis scale down signal in low frequency and keep dynamic in HF.
* Vad work slightly in futur (new_speech = speech + L_NEXT - L_FILT).
*/
vad_flag = E_DTX_vad(st->vadSt, new_speech);
if (vad_flag == 0)
{
st->mem_vad_hist = 1;
}
else
{
st->mem_vad_hist = 0;
}
/* DTX processing */
if (allow_dtx)
{
/* Note that mode may change here */
E_DTX_tx_handler(st->dtx_encSt, vad_flag, mode);
}
else
{
E_DTX_reset(st->dtx_encSt);
}
if(*mode != MRDTX)
{
E_MAIN_parm_store(vad_flag, &prms);
}
/*
* Perform LPC analysis
* --------------------
* - autocorrelation + lag windowing
* - Levinson-durbin algorithm to find a[]
* - convert a[] to isp[]
* - convert isp[] to isf[] for quantization
* - quantize and code the isf[]
* - convert isf[] to isp[] for interpolation
* - find the interpolated isps and convert to a[] for the 4 subframes
*/
/* LP analysis centered at 3nd subframe */
E_UTIL_autocorr(st->mem_speech, r);
E_LPC_lag_wind(r + 1, M); /* Lag windowing */
E_LPC_lev_dur(A, r, M);
E_LPC_a_isp_conversion(A, ispnew, st->mem_isp, M); /* From A(z) to isp */
/* Find the interpolated isps and convert to a[] for all subframes */
E_LPC_f_int_isp_find(st->mem_isp, ispnew, A, NB_SUBFR, M);
/* update isp memory for the next frame */
memcpy(st->mem_isp, ispnew, M * sizeof(Float32));
/* Convert isps to frequency domain 0..6400 */
E_LPC_isp_isf_conversion(ispnew, isf, M);
/* check resonance for pitch clipping algorithm */
E_GAIN_clip_isf_test(isf, st->mem_gp_clip);
/*
* Perform PITCH_OL analysis
* -------------------------
* - Find the residual res[] for the whole speech frame
* - Find the weighted input speech wsp[] for the whole speech frame
* - Find the 2 open-loop pitch estimate
* - Set the range for searching closed-loop pitch in 1st subframe
*/
p_A = A;
for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR)
{
E_LPC_a_weight(p_A, Ap, GAMMA1, M);
E_UTIL_residu(Ap, &speech[i_subfr], &wsp[i_subfr], L_SUBFR);
p_A += (M + 1);
}
E_UTIL_deemph(wsp, TILT_FAC, L_FRAME, &(st->mem_wsp_df));
/* decimation of wsp[] to search pitch in LF and to reduce complexity */
E_GAIN_lp_decim2(wsp, L_FRAME, st->mem_decim2);
/* Find open loop pitch lag for whole speech frame */
if (*mode == MODE_7k)
{
/* Find open loop pitch lag for whole speech frame */
T_op = E_GAIN_open_loop_search(wsp, PIT_MIN / OPL_DECIM,
PIT_MAX / OPL_DECIM, L_FRAME / OPL_DECIM, st->mem_T0_med,
&(st->mem_ol_gain), st->mem_hf_wsp, st->mem_hp_wsp,
st->mem_ol_wght_flg);
}
else
{
/* Find open loop pitch lag for first 1/2 frame */
T_op = E_GAIN_open_loop_search(wsp, PIT_MIN / OPL_DECIM,
PIT_MAX / OPL_DECIM, (L_FRAME / 2) / OPL_DECIM, st->mem_T0_med,
&(st->mem_ol_gain), st->mem_hf_wsp, st->mem_hp_wsp,
st->mem_ol_wght_flg);
}
if (st->mem_ol_gain > 0.6)
{
st->mem_T0_med = E_GAIN_olag_median(T_op, st->mem_ol_lag);
st->mem_ada_w = 1.0F;
}
else
{
st->mem_ada_w = st->mem_ada_w * 0.9F;
}
if (st->mem_ada_w < 0.8)
{
st->mem_ol_wght_flg = 0;
}
else
{
st->mem_ol_wght_flg = 1;
}
E_DTX_pitch_tone_detection(st->vadSt, st->mem_ol_gain);
T_op *= OPL_DECIM;
if (*mode != MODE_7k)
{
/* Find open loop pitch lag for second 1/2 frame */
T_op2 = E_GAIN_open_loop_search(wsp + ((L_FRAME / 2) / OPL_DECIM),
PIT_MIN / OPL_DECIM, PIT_MAX / OPL_DECIM, (L_FRAME / 2) / OPL_DECIM,
st->mem_T0_med, &st->mem_ol_gain, st->mem_hf_wsp, st->mem_hp_wsp,
st->mem_ol_wght_flg);
if (st->mem_ol_gain > 0.6)
{
st->mem_T0_med = E_GAIN_olag_median(T_op2, st->mem_ol_lag);
st->mem_ada_w = 1.0F;
}
else
{
st->mem_ada_w = st->mem_ada_w * 0.9F;
}
if (st->mem_ada_w < 0.8)
{
st->mem_ol_wght_flg = 0;
}
else
{
st->mem_ol_wght_flg = 1;
}
E_DTX_pitch_tone_detection(st->vadSt, st->mem_ol_gain);
T_op2 *= OPL_DECIM;
}
else
{
T_op2 = T_op;
}
/*
* DTX-CNG
*/
if(*mode == MRDTX)
{
/* Buffer isf's and energy */
E_UTIL_residu(&A[3 * (M + 1)], speech, f_exc, L_FRAME);
f_tmp = 0.0;
for(i = 0; i < L_FRAME; i++)
{
f_tmp += f_exc[i] * f_exc[i];
}
E_DTX_buffer(st->dtx_encSt, isf, f_tmp, codec_mode);
/* Quantize and code the isfs */
E_DTX_exe(st->dtx_encSt, f_exc2, &prms);
/* reset speech coder memories */
E_MAIN_reset(st, 0);
/*
* Update signal for next frame.
* -> save past of speech[] and wsp[].
*/
memcpy(st->mem_speech, &st->mem_speech[L_FRAME],
(L_TOTAL - L_FRAME) * sizeof(Float32));
memcpy(st->mem_wsp, &st->mem_wsp[L_FRAME / OPL_DECIM],
(PIT_MAX / OPL_DECIM) * sizeof(Float32));
return(0);
}
/*
* ACELP
*/
/* Quantize and code the isfs */
if (*mode <= MODE_7k)
{
E_LPC_isf_2s3s_quantise(isf, isfq, st->mem_isf_q, indice, 4);
E_MAIN_parm_store((Word16)indice[0], &prms);
E_MAIN_parm_store((Word16)indice[1], &prms);
E_MAIN_parm_store((Word16)indice[2], &prms);
E_MAIN_parm_store((Word16)indice[3], &prms);
E_MAIN_parm_store((Word16)indice[4], &prms);
}
else
{
E_LPC_isf_2s5s_quantise(isf, isfq, st->mem_isf_q, indice, 4);
E_MAIN_parm_store((Word16)indice[0], &prms);
E_MAIN_parm_store((Word16)indice[1], &prms);
E_MAIN_parm_store((Word16)indice[2], &prms);
E_MAIN_parm_store((Word16)indice[3], &prms);
E_MAIN_parm_store((Word16)indice[4], &prms);
E_MAIN_parm_store((Word16)indice[5], &prms);
E_MAIN_parm_store((Word16)indice[6], &prms);
}
/* Convert isfs to the cosine domain */
E_LPC_isf_isp_conversion(isfq, ispnew_q, M);
if (*mode == MODE_24k)
{
/* Check stability on isf : distance between old isf and current isf */
f_tmp = 0.0F;
f_pt_tmp = st->mem_isf;
for (i=0; i < M - 1; i++)
{
f_tmp += (isf[i] - f_pt_tmp[i]) * (isf[i] - f_pt_tmp[i]);
}
stab_fac = (Float32)(1.25F - (f_tmp / 400000.0F));
if (stab_fac > 1.0F)
{
stab_fac = 1.0F;
}
if (stab_fac < 0.0F)
{
stab_fac = 0.0F;
}
memcpy(f_pt_tmp, isf, M * sizeof(Float32));
}
if (st->mem_first_frame == 1)
{
st->mem_first_frame = 0;
memcpy(st->mem_isp_q, ispnew_q, M * sizeof(Word16));
}
/* Find the interpolated isps and convert to a[] for all subframes */
E_LPC_int_isp_find(st->mem_isp_q, ispnew_q, E_ROM_interpol_frac, s_Aq);
for (i = 0; i < (NB_SUBFR * (M + 1)); i++)
{
Aq[i] = s_Aq[i] * 0.000244140625F; /* 1/4096 */
}
/* update isp memory for the next frame */
memcpy(st->mem_isp_q, ispnew_q, M * sizeof(Word16));
/*
* Find the best interpolation for quantized ISPs
*/
p_Aq = Aq;
for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR)
{
E_UTIL_residu(p_Aq, &speech[i_subfr], &f_exc[i_subfr], L_SUBFR);
p_Aq += (M + 1);
}
/* Buffer isf's and energy for dtx on non-speech frame */
if(vad_flag == 0)
{
f_tmp = 0.0F;
for(i = 0; i < L_FRAME; i++)
{
f_tmp += f_exc[i] * f_exc[i];
}
E_DTX_buffer(st->dtx_encSt, isf, f_tmp, codec_mode);
}
/* range for closed loop pitch search in 1st subframe */
T0_min = T_op - 8;
if (T0_min < PIT_MIN)
{
T0_min = PIT_MIN;
}
T0_max = T0_min + 15;
if (T0_max > PIT_MAX)
{
T0_max = PIT_MAX;
T0_min = T0_max - 15;
}
/*
* Loop for every subframe in the analysis frame
* ---------------------------------------------
* To find the pitch and innovation parameters. The subframe size is
* L_SUBFR and the loop is repeated L_FRAME/L_SUBFR times.
* - compute the target signal for pitch search
* - compute impulse response of weighted synthesis filter (h1[])
* - find the closed-loop pitch parameters
* - encode the pitch dealy
* - find 2 lt prediction (with / without LP filter for lt pred)
* - find 2 pitch gains and choose the best lt prediction.
* - find target vector for codebook search
* - update the impulse response h1[] for codebook search
* - correlation between target vector and impulse response
* - codebook search and encoding
* - VQ of pitch and codebook gains
* - find voicing factor and tilt of code for next subframe.
* - update states of weighting filter
* - find excitation and synthesis speech
*/
p_A = A;
p_Aq = Aq;
for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR)
{
pit_flag = i_subfr;
if ((i_subfr == (2 * L_SUBFR)) & (*mode > MODE_7k))
{
pit_flag = 0;
/* range for closed loop pitch search in 3rd subframe */
T0_min = T_op2 - 8;
if (T0_min < PIT_MIN)
{
T0_min = PIT_MIN;
}
T0_max = T0_min + 15;
if (T0_max > PIT_MAX)
{
T0_max = PIT_MAX;
T0_min = T0_max - 15;
}
}
/*
*
* Find the target vector for pitch search:
* ---------------------------------------
*
* |------| res[n]
* speech[n]---| A(z) |--------
* |------| | |--------| error[n] |------|
* zero -- (-)--| 1/A(z) |-----------| W(z) |-- target
* exc |--------| |------|
*
* Instead of subtracting the zero-input response of filters from
* the weighted input speech, the above configuration is used to
* compute the target vector.
*
*/
for (i = 0; i < M; i++)
{
error[i] = (Float32)(speech[i + i_subfr - 16] - st->mem_syn[i]);
}
E_UTIL_residu(p_Aq, &speech[i_subfr], &f_exc[i_subfr], L_SUBFR);
E_UTIL_synthesis(p_Aq, &f_exc[i_subfr], error + M, L_SUBFR, error, 0);
E_LPC_a_weight(p_A, Ap, GAMMA1, M);
E_UTIL_residu(Ap, error + M, xn, L_SUBFR);
E_UTIL_deemph(xn, TILT_FAC, L_SUBFR, &(st->mem_w0));
/*
* Find target in residual domain (cn[]) for innovation search.
*/
/* first half: xn[] --> cn[] */
memset(f_code, 0, M * sizeof(Float32));
memcpy(f_code + M, xn, (L_SUBFR / 2) * sizeof(Float32));
f_tmp = 0.0F;
E_UTIL_f_preemph(f_code + M, TILT_FAC, L_SUBFR / 2, &f_tmp);
E_LPC_a_weight(p_A, Ap, GAMMA1, M);
E_UTIL_synthesis(Ap, f_code + M, f_code + M, L_SUBFR / 2, f_code, 0);
E_UTIL_residu(p_Aq, f_code + M, cn, L_SUBFR / 2);
/* second half: res[] --> cn[] (approximated and faster) */
for(i = (L_SUBFR / 2); i < L_SUBFR; i++)
{
cn[i] = f_exc[i_subfr + i];
}
/*
* Compute impulse response, h1[], of weighted synthesis filter
*/
E_LPC_a_weight(p_A, Ap, GAMMA1, M);
memset(h1, 0, L_SUBFR * sizeof(Float32));
memcpy(h1, Ap, (M + 1) * sizeof(Float32));
E_UTIL_synthesis(p_Aq, h1, h1, L_SUBFR, h1 + (M + 1), 0);
f_tmp = 0.0;
E_UTIL_deemph(h1, TILT_FAC, L_SUBFR, &f_tmp);
/*
* Closed-loop fractional pitch search
*/
/* find closed loop fractional pitch lag */
if (*mode <= MODE_9k)
{
T0 = E_GAIN_closed_loop_search(&f_exc[i_subfr], xn, h1,
T0_min, T0_max, &T0_frac,
pit_flag, PIT_MIN, PIT_FR1_8b);
/* encode pitch lag */
if (pit_flag == 0) /* if 1st/3rd subframe */
{
/*
* The pitch range for the 1st/3rd subframe is encoded with
* 8 bits and is divided as follows:
* PIT_MIN to PIT_FR1-1 resolution 1/2 (frac = 0 or 2)
* PIT_FR1 to PIT_MAX resolution 1 (frac = 0)
*/
if (T0 < PIT_FR1_8b)
{
index = (Word16)(T0 * 2 + (T0_frac >> 1) - (PIT_MIN * 2));
}
else
{
index = (Word16)(T0 - PIT_FR1_8b + ((PIT_FR1_8b - PIT_MIN) * 2));
}
E_MAIN_parm_store(index, &prms);
/* find T0_min and T0_max for subframe 2 and 4 */
T0_min = T0 - 8;
if (T0_min < PIT_MIN)
{
T0_min = PIT_MIN;
}
T0_max = T0_min + 15;
if (T0_max > PIT_MAX)
{
T0_max = PIT_MAX;
T0_min = T0_max - 15;
}
}
else /* if subframe 2 or 4 */
{
/*
* The pitch range for subframe 2 or 4 is encoded with 6 bits:
* T0_min to T0_max resolution 1/2 (frac = 0 or 2)
*/
i = T0 - T0_min;
index = (Word16)(i * 2 + (T0_frac >> 1));
E_MAIN_parm_store(index, &prms);
}
}
else
{
T0 = E_GAIN_closed_loop_search(&f_exc[i_subfr], xn, h1,
T0_min, T0_max, &T0_frac,
pit_flag, PIT_FR2, PIT_FR1_9b);
/* encode pitch lag */
if (pit_flag == 0) /* if 1st/3rd subframe */
{
/*
* The pitch range for the 1st/3rd subframe is encoded with
* 9 bits and is divided as follows:
* PIT_MIN to PIT_FR2-1 resolution 1/4 (frac = 0,1,2 or 3)
* PIT_FR2 to PIT_FR1-1 resolution 1/2 (frac = 0 or 2)
* PIT_FR1 to PIT_MAX resolution 1 (frac = 0)
*/
if (T0 < PIT_FR2)
{
index = (Word16)(T0 * 4 + T0_frac - (PIT_MIN * 4));
}
else if (T0 < PIT_FR1_9b)
{
index = (Word16)(T0 * 2 + (T0_frac >> 1) - (PIT_FR2 * 2) + ((PIT_FR2 - PIT_MIN) * 4));
}
else
{
index = (Word16)(T0 - PIT_FR1_9b + ((PIT_FR2 - PIT_MIN) * 4) + ((PIT_FR1_9b - PIT_FR2) * 2));
}
E_MAIN_parm_store(index, &prms);
/* find T0_min and T0_max for subframe 2 and 4 */
T0_min = T0 - 8;
if (T0_min < PIT_MIN)
{
T0_min = PIT_MIN;
}
T0_max = T0_min + 15;
if (T0_max > PIT_MAX)
{
T0_max = PIT_MAX;
T0_min = T0_max - 15;
}
}
else /* if subframe 2 or 4 */
{
/*
* The pitch range for subframe 2 or 4 is encoded with 6 bits:
* T0_min to T0_max resolution 1/4 (frac = 0,1,2 or 3)
*/
i = T0 - T0_min;
index = (Word16)(i * 4 + T0_frac);
E_MAIN_parm_store(index, &prms);
}
}
/*
* Gain clipping test to avoid unstable synthesis on frame erasure
*/
clip_gain = E_GAIN_clip_test(st->mem_gp_clip);
/*
* - find unity gain pitch excitation (adaptive codebook entry)
* with fractional interpolation.
* - find filtered pitch exc. y1[]=exc[] convolved with h1[])
* - compute pitch gain1
*/
/* find pitch exitation */
E_GAIN_adaptive_codebook_excitation(&exc[i_subfr], (Word16)T0, T0_frac, L_SUBFR + 1);
if(*mode > MODE_9k)
{
E_UTIL_convolve(&exc[i_subfr], st->mem_q, h1, y1);
gain1 = E_ACELP_xy1_corr(xn, y1, g_coeff);
/* clip gain if necessary to avoid problem at decoder */
if (clip_gain && (gain1 > 0.95))
{
gain1 = 0.95f;
}
/* find energy of new target xn2[] */
E_ACELP_codebook_target_update(xn, dn, y1, gain1);
}
else
{
gain1 = 0.0F;
}
/*
* - find pitch excitation filtered by 1st order LP filter.
* - find filtered pitch exc. y2[]=exc[] convolved with h1[])
* - compute pitch gain2
*/
/* find pitch excitation with lp filter */
for (i = 0; i < L_SUBFR; i++)
{
l_tmp = 5898 * exc[i - 1 + i_subfr];
l_tmp += 20972 * exc[i + i_subfr];
l_tmp += 5898 * exc[i + 1 + i_subfr];
s_code[i] = (Word16)((l_tmp + 0x4000) >> 15);
}
E_UTIL_convolve(s_code, st->mem_q, h1, y2);
gain2 = E_ACELP_xy1_corr(xn, y2, g_coeff2);
/* clip gain if necessary to avoid problem at decoder */
if (clip_gain && (gain2 > 0.95))
{
gain2 = 0.95F;
}
/* find energy of new target xn2[] */
E_ACELP_codebook_target_update(xn, xn2, y2, gain2);
/*
* use the best prediction (minimise quadratic error).
*/
select = 0;
if (*mode > MODE_9k)
{
f_tmp = 0.0;
for (i = 0; i < L_SUBFR; i++)
{
f_tmp += dn[i] * dn[i];
f_tmp -= xn2[i] * xn2[i];
}
if (f_tmp < 0.1)
{
select = 1;
}
E_MAIN_parm_store(select, &prms);
}
if (select == 0)
{
/* use the lp filter for pitch excitation prediction */
memcpy(&exc[i_subfr], s_code, L_SUBFR * sizeof(Word16));
memcpy(y1, y2, L_SUBFR * sizeof(Float32));
gain_pit = gain2;
g_coeff[0] = g_coeff2[0];
g_coeff[1] = g_coeff2[1];
}
else
{
/* no filter used for pitch excitation prediction */
gain_pit = gain1;
memcpy(xn2, dn, L_SUBFR * sizeof(Float32)); /* target vector for codebook search */
}
/*
* - update target vector for codebook search
* - scaling of cn[] to limit dynamic at 12 bits
*/
for (i = 0; i < L_SUBFR; i ++)
{
cn[i] = (Float32)(cn[i] - gain_pit * exc[i_subfr + i] * pow(2, Q_new));
}
/*
* - include fixed-gain pitch contribution into impulse resp. h1[]
*/
f_tmp = 0.0F;
E_UTIL_f_preemph(h1, (Float32)(st->mem_tilt_code / 32768.0), L_SUBFR, &f_tmp);
if (T0_frac > 2)
{
T0++;
}
E_GAIN_f_pitch_sharpening(h1, T0);
/*
* - Correlation between target xn2[] and impulse response h1[]
* - Innovative codebook search
*/
E_ACELP_xh_corr(xn2, dn, h1);
switch(*mode)
{
case MODE_7k:
E_ACELP_2t(dn, cn, h1, s_code, y2, indice);
E_MAIN_parm_store((Word16)indice[0], &prms);
break;
case MODE_9k:
E_ACELP_4t(dn, cn, h1, s_code, y2, 20, *mode, indice);
E_MAIN_parm_store((Word16)indice[0], &prms);
E_MAIN_parm_store((Word16)indice[1], &prms);
E_MAIN_parm_store((Word16)indice[2], &prms);
E_MAIN_parm_store((Word16)indice[3], &prms);
break;
case MODE_12k:
E_ACELP_4t(dn, cn, h1, s_code, y2, 36, *mode, indice);
E_MAIN_parm_store((Word16)indice[0], &prms);
E_MAIN_parm_store((Word16)indice[1], &prms);
E_MAIN_parm_store((Word16)indice[2], &prms);
E_MAIN_parm_store((Word16)indice[3], &prms);
break;
case MODE_14k:
E_ACELP_4t(dn, cn, h1, s_code, y2, 44, *mode, indice);
E_MAIN_parm_store((Word16)indice[0], &prms);
E_MAIN_parm_store((Word16)indice[1], &prms);
E_MAIN_parm_store((Word16)indice[2], &prms);
E_MAIN_parm_store((Word16)indice[3], &prms);
break;
case MODE_16k:
E_ACELP_4t(dn, cn, h1, s_code, y2, 52, *mode, indice);
E_MAIN_parm_store((Word16)indice[0], &prms);
E_MAIN_parm_store((Word16)indice[1], &prms);
E_MAIN_parm_store((Word16)indice[2], &prms);
E_MAIN_parm_store((Word16)indice[3], &prms);
break;
case MODE_18k:
E_ACELP_4t(dn, cn, h1, s_code, y2, 64, *mode, indice);
E_MAIN_parm_store((Word16)indice[0], &prms);
E_MAIN_parm_store((Word16)indice[1], &prms);
E_MAIN_parm_store((Word16)indice[2], &prms);
E_MAIN_parm_store((Word16)indice[3], &prms);
E_MAIN_parm_store((Word16)indice[4], &prms);
E_MAIN_parm_store((Word16)indice[5], &prms);
E_MAIN_parm_store((Word16)indice[6], &prms);
E_MAIN_parm_store((Word16)indice[7], &prms);
break;
case MODE_20k:
E_ACELP_4t(dn, cn, h1, s_code, y2, 72, *mode, indice);
E_MAIN_parm_store((Word16)indice[0], &prms);
E_MAIN_parm_store((Word16)indice[1], &prms);
E_MAIN_parm_store((Word16)indice[2], &prms);
E_MAIN_parm_store((Word16)indice[3], &prms);
E_MAIN_parm_store((Word16)indice[4], &prms);
E_MAIN_parm_store((Word16)indice[5], &prms);
E_MAIN_parm_store((Word16)indice[6], &prms);
E_MAIN_parm_store((Word16)indice[7], &prms);
break;
case MODE_23k:
case MODE_24k:
E_ACELP_4t(dn, cn, h1, s_code, y2, 88, *mode, indice);
E_MAIN_parm_store((Word16)indice[0], &prms);
E_MAIN_parm_store((Word16)indice[1], &prms);
E_MAIN_parm_store((Word16)indice[2], &prms);
E_MAIN_parm_store((Word16)indice[3], &prms);
E_MAIN_parm_store((Word16)indice[4], &prms);
E_MAIN_parm_store((Word16)indice[5], &prms);
E_MAIN_parm_store((Word16)indice[6], &prms);
E_MAIN_parm_store((Word16)indice[7], &prms);
break;
default:
return -1;
}
/*
* - Add the fixed-gain pitch contribution to code[].
*/
s_tmp = 0;
E_UTIL_preemph(s_code, st->mem_tilt_code, L_SUBFR, &s_tmp);
E_GAIN_pitch_sharpening(s_code, (Word16)T0);
E_ACELP_xy2_corr(xn, y1, y2, g_coeff);
/*
* - Compute the fixed codebook gain
* - quantize fixed codebook gain
*/
if (*mode <= MODE_9k)
{
index = (Word16)E_ACELP_gains_quantise(s_code, 6, gain_pit,
&s_gain_pit, &L_gain_code, g_coeff, clip_gain, st->mem_gain_q);
E_MAIN_parm_store(index, &prms);
}
else
{
index = (Word16)E_ACELP_gains_quantise(s_code, 7, gain_pit,
&s_gain_pit, &L_gain_code, g_coeff, clip_gain, st->mem_gain_q);
E_MAIN_parm_store(index, &prms);
}
/* find best scaling to perform on excitation (Q_new) */
s_tmp = st->mem_subfr_q[0];
for (i = 1; i < 4; i++)
{
if (st->mem_subfr_q[i] < s_tmp)
{
s_tmp = st->mem_subfr_q[i];
}
}
/* limit scaling (Q_new) to Q_MAX */
if (s_tmp > Q_MAX)
{
s_tmp = Q_MAX;
}
Q_new = 0;
l_tmp = L_gain_code; /* L_gain_code in Q16 */
while ((l_tmp < 0x08000000L) && (Q_new < s_tmp))
{
l_tmp = (l_tmp << 1);
Q_new = Q_new + 1;
}
if (l_tmp < 0x7FFF7FFF)
{
/* scaled gain_code with Qnew */
gain_code = (Word16)((l_tmp + 0x8000) >> 16);
}
else
{
gain_code = 32767;
}
if (Q_new > st->mem_q)
{
E_UTIL_signal_up_scale(exc + i_subfr - (PIT_MAX + L_INTERPOL),
(Word16)(Q_new - st->mem_q));
}
else
{
E_UTIL_signal_down_scale(exc + i_subfr - (PIT_MAX + L_INTERPOL),
PIT_MAX + L_INTERPOL + L_SUBFR, (Word16)(st->mem_q - Q_new));
}
st->mem_q = (Word16)Q_new;
/* test quantized gain of pitch for pitch clipping algorithm */
E_GAIN_clip_pit_test((Float32)(s_gain_pit * pow(2, -14)),
st->mem_gp_clip);
/*
* Update parameters for the next subframe.
* - tilt of code: 0.0 (unvoiced) to 0.5 (voiced)
*/
/* find voice factor in Q15 (1=voiced, -1=unvoiced) */
memcpy(exc2, &exc[i_subfr], L_SUBFR * sizeof(Word16));
E_UTIL_signal_down_scale(exc2, L_SUBFR, 3);
voice_fac = E_GAIN_voice_factor(exc2, -3, s_gain_pit, s_code, gain_code);
/* tilt of code for next subframe: 0.5=voiced, 0=unvoiced */
st->mem_tilt_code = (Word16)((voice_fac >> 2) + 8192);
/*
* - Update filter's memory "mem_w0" for finding the
* target vector in the next subframe.
* - Find the total excitation
* - Find synthesis speech to update mem_syn[].
*/
memcpy(exc2, &exc[i_subfr], L_SUBFR * sizeof(Word16));
st->mem_w0 = (Float32)((xn[L_SUBFR - 1] -
((s_gain_pit / 16384.0F) * y1[L_SUBFR - 1])) -
(gain_code * pow(2, -st->mem_q) * y2[L_SUBFR - 1]));
if (*mode == MODE_24k)
{
Q_new = -st->mem_q;
for (i = 0; i < L_SUBFR; i++)
{
f_exc2[i_subfr + i] = (Float32)(exc[i_subfr + i] * pow(2, Q_new) * (s_gain_pit / 16384.0F));
}
}
s_max = 1;
for (i = 0; i < L_SUBFR; i++)
{
/* code in Q9, gain_pit in Q14 */
l_tmp = gain_code * s_code[i];
l_tmp = l_tmp << 5;
l_tmp += exc[i + i_subfr] * s_gain_pit; /* gain_pit Q14 */
l_tmp = (l_tmp + 0x2000) >> 14;
if ((l_tmp > MIN_16) & (l_tmp < 32768))
{
exc[i + i_subfr] = (Word16)l_tmp;
s_tmp = (Word16)abs(l_tmp);
if (s_tmp > s_max)
{
s_max = s_tmp;
}
}
else if (l_tmp > MAX_16)
{
exc[i + i_subfr] = MAX_16;
s_max = MAX_16;
}
else
{
exc[i + i_subfr] = MIN_16;
s_max = MAX_16;
}
}
/* tmp = scaling possible according to max value of excitation */
s_tmp = (Word16)((E_UTIL_norm_s(s_max) + st->mem_q) - 1);
st->mem_subfr_q[3] = st->mem_subfr_q[2];
st->mem_subfr_q[2] = st->mem_subfr_q[1];
st->mem_subfr_q[1] = st->mem_subfr_q[0];
st->mem_subfr_q[0] = s_tmp;
Q_new = -st->mem_q;
for (i = 0; i < L_SUBFR; i++)
{
f_exc[i + i_subfr] = (Float32)(exc[i + i_subfr] * pow(2, Q_new));
}
E_UTIL_synthesis(p_Aq, &f_exc[i_subfr], synth, L_SUBFR, st->mem_syn, 1);
if(*mode >= MODE_24k)
{
/*
* noise enhancer
* --------------
* - Enhance excitation on noise. (modify gain of code)
* If signal is noisy and LPC filter is stable, move gain
* of code 1.5 dB toward gain of code threshold.
* This decrease by 3 dB noise energy variation.
*/
/* 1=unvoiced, 0=voiced */
f_tmp = (Float32)(0.5 * (1.0 - (voice_fac / 32768.0)));
fac = stab_fac * f_tmp;
f_tmp = (Float32)(gain_code * pow(2, -st->mem_q));
if(f_tmp < st->mem_gc_threshold)
{
f_tmp = (Float32)(f_tmp * 1.19);
if(f_tmp > st->mem_gc_threshold)
{
f_tmp = st->mem_gc_threshold;
}
}
else
{
f_tmp = (Float32)(f_tmp / 1.19);
if(f_tmp < st->mem_gc_threshold)
{
f_tmp = st->mem_gc_threshold;
}
}
st->mem_gc_threshold = f_tmp;
f_tmp = (Float32)(((fac * f_tmp) + ((1.0 - fac) *
(gain_code * pow(2, -st->mem_q)))) * 0.001953125F);
for(i = 0; i < L_SUBFR; i++)
{
f_code[i] = (Float32)(s_code[i] * f_tmp);
}
/*
* pitch enhancer
* --------------
* - Enhance excitation on voice. (HP filtering of code)
* On voiced signal, filtering of code by a smooth fir HP
* filter to decrease energy of code in low frequency.
*/
/* 0.25=voiced, 0=unvoiced */
f_tmp = (Float32)(0.125F * (1.0F + (voice_fac / 32768.0)));
f_exc2[i_subfr] += f_code[0] - (f_tmp * f_code[1]);
for(i = 1; i < L_SUBFR - 1; i++)
{
f_exc2[i + i_subfr] +=
f_code[i] - (f_tmp * f_code[i - 1]) - (f_tmp * f_code[i + 1]);
}
f_exc2[i_subfr + L_SUBFR - 1] +=
f_code[L_SUBFR - 1] - (f_tmp * f_code[L_SUBFR - 2]);
corr_gain = (Word16)E_UTIL_enc_synthesis(p_Aq, &f_exc2[i_subfr],
&f_speech16k[i_subfr * 5 /4], st);
E_MAIN_parm_store(corr_gain, &prms);
}
p_A += (M + 1);
p_Aq += (M + 1);
} /* end of subframe loop */
/*
* Update signal for next frame.
* -> save past of speech[], wsp[] and exc[].
*/
memmove(st->mem_speech, &st->mem_speech[L_FRAME], (L_TOTAL - L_FRAME) * sizeof(Float32));
memmove(st->mem_wsp, &st->mem_wsp[L_FRAME / OPL_DECIM], (PIT_MAX / OPL_DECIM) * sizeof(Float32));
memmove(st->mem_exc, &st->mem_exc[L_FRAME], (PIT_MAX + L_INTERPOL) * sizeof(Word16));
return 0;
}