avs-device-sdk/AVSCommon/Utils/test/TaskThreadTest.cpp

206 lines
6.4 KiB
C++

/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <gtest/gtest.h>
#include "AVSCommon/Utils/Logger/ThreadMoniker.h"
#include "AVSCommon/Utils/Threading/TaskThread.h"
#include "AVSCommon/Utils/WaitEvent.h"
namespace alexaClientSDK {
namespace avsCommon {
namespace utils {
namespace threading {
namespace test {
/// Timeout used while waiting for synchronization events.
const std::chrono::milliseconds MY_WAIT_TIMEOUT{100};
using namespace logger;
/// Test that wait will return if no job has ever started.
TEST(TaskThreadTest, test_waitForNothing) {
TaskThread taskThread;
}
/// Test that start will fail if function is empty.
TEST(TaskThreadTest, test_startFailsDueToEmptyFunction) {
TaskThread taskThread;
std::function<bool()> emptyFunction;
EXPECT_FALSE(taskThread.start(emptyFunction));
}
/// Test that start will trigger the provided job and thread will exit once the job is done and return @c false.
TEST(TaskThreadTest, test_simpleJob) {
bool finished = false;
WaitEvent waitEvent;
auto simpleJob = [&finished, &waitEvent] {
finished = true;
waitEvent.wakeUp();
return false;
};
{
TaskThread taskThread;
EXPECT_TRUE(taskThread.start(simpleJob));
EXPECT_TRUE(waitEvent.wait(MY_WAIT_TIMEOUT));
}
EXPECT_TRUE(finished);
}
/// Test that start will trigger the provided job and it will execute the job multiple times until the job returns
/// @c false.
TEST(TaskThreadTest, test_sequenceJobs) {
int taskCounter = 0;
const int runUntil = 10;
WaitEvent waitEvent;
auto jobSequence = [&] {
taskCounter++;
if (taskCounter < runUntil) {
return true;
}
waitEvent.wakeUp();
return false;
};
{
TaskThread taskThread;
EXPECT_TRUE(taskThread.start(jobSequence));
EXPECT_TRUE(waitEvent.wait(MY_WAIT_TIMEOUT));
}
EXPECT_EQ(taskCounter, runUntil);
}
/// Test that start will replace the existing next function.
/// - First function increments the counter, while the second will decrement until it reaches 0.
TEST(TaskThreadTest, test_startNewJob) {
WaitEvent waitEvent;
int taskCounter = 0;
auto increment = [&taskCounter, &waitEvent] {
taskCounter++;
waitEvent.wakeUp();
return true;
};
WaitEvent waitEvent2;
auto decrement = [&taskCounter, &waitEvent2] {
taskCounter--;
if (taskCounter > 0) {
return true;
} else {
waitEvent2.wakeUp();
return false;
}
};
TaskThread taskThread;
EXPECT_TRUE(taskThread.start(increment));
EXPECT_TRUE(waitEvent.wait(MY_WAIT_TIMEOUT));
EXPECT_TRUE(taskThread.start(decrement));
EXPECT_TRUE(waitEvent2.wait(MY_WAIT_TIMEOUT));
EXPECT_TRUE(taskCounter == 0);
}
/// Test that start will fail if called multiple times while waiting for a job to start.
TEST(TaskThreadTest, testTimer_startFailDueTooManyThreads) {
WaitEvent waitEnqueue, waitStart;
auto simpleJob = [&waitEnqueue, &waitStart] {
waitStart.wakeUp(); // Job has started.
waitEnqueue.wait(MY_WAIT_TIMEOUT); // Wait till job should finish.
return false;
};
TaskThread taskThread;
EXPECT_TRUE(taskThread.start(simpleJob));
// Wait until first job has started.
waitStart.wait(MY_WAIT_TIMEOUT);
EXPECT_TRUE(taskThread.start([] { return false; }));
// Starting a thread again immediately should fail, unless the system is so fast in starting
// the thread on the other core that it starts and runs a few instructions before this can
// call start again. We can account for such a very fast system by running in a loop 100 times.
int threadStartCount;
for (threadStartCount = 0; threadStartCount < 100; threadStartCount++) {
// This should fail since the task thread is starting.
if (!taskThread.start([] { return false; })) {
break;
}
}
EXPECT_TRUE(threadStartCount < 100);
waitEnqueue.wakeUp();
}
/// Test that threads related to this task thread will always have the same moniker.
TEST(TaskThreadTest, DISABLED_test_moniker) {
WaitEvent waitGetMoniker, waitValidateMoniker;
std::string moniker;
auto getMoniker = [&moniker, &waitGetMoniker] {
moniker = ThreadMoniker::getThisThreadMoniker();
waitGetMoniker.wakeUp();
return false;
};
auto validateMoniker = [&moniker, &waitValidateMoniker] {
EXPECT_EQ(moniker, ThreadMoniker::getThisThreadMoniker());
waitValidateMoniker.wakeUp();
return false;
};
TaskThread taskThread;
EXPECT_TRUE(taskThread.start(getMoniker));
waitGetMoniker.wait(MY_WAIT_TIMEOUT);
EXPECT_TRUE(taskThread.start(validateMoniker));
waitValidateMoniker.wait(MY_WAIT_TIMEOUT);
}
/// Test that threads from different @c TaskThreads will have different monikers.
TEST(TaskThreadTest, test_monikerDifferentObjects) {
WaitEvent waitGetMoniker, waitThread2Start, waitValidateMoniker;
std::string moniker;
auto getMoniker = [&moniker, &waitGetMoniker, &waitThread2Start] {
moniker = ThreadMoniker::getThisThreadMoniker();
waitGetMoniker.wakeUp();
// execute until thread2 has started, to ensure it cannot re-use the same thread.
waitThread2Start.wait(MY_WAIT_TIMEOUT);
return false;
};
auto validateMoniker = [&moniker, &waitValidateMoniker] {
EXPECT_NE(moniker, ThreadMoniker::getThisThreadMoniker());
waitValidateMoniker.wakeUp();
return false;
};
TaskThread taskThread1;
TaskThread taskThread2;
EXPECT_TRUE(taskThread1.start(getMoniker));
EXPECT_TRUE(taskThread2.start(validateMoniker));
waitThread2Start.wakeUp();
waitGetMoniker.wait(MY_WAIT_TIMEOUT);
waitValidateMoniker.wait(MY_WAIT_TIMEOUT);
}
} // namespace test
} // namespace threading
} // namespace utils
} // namespace avsCommon
} // namespace alexaClientSDK