avs-device-sdk/AVSCommon/Utils/test/TaskQueueTest.cpp

288 lines
9.5 KiB
C++
Raw Normal View History

/*
* TaskQueueTest.cpp
*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <gtest/gtest.h>
#include "ExecutorTestUtils.h"
#include "AVSCommon/Utils/Threading/Executor.h"
#include "AVSCommon/Utils/Threading/TaskQueue.h"
namespace alexaClientSDK {
namespace avsCommon {
namespace utils {
namespace threading {
namespace test {
class TaskQueueTest: public ::testing::Test {
public:
/**
* Asserts that a call to pop on an empty queue is blocking, and will be awoken by a task being pushed onto
* the queue
*/
void testQueueBlocksWhenEmpty() {
// Have another thread blocked on the queue
auto future = std::async(std::launch::async, [=]() {
auto t = queue.pop();
return t->operator()();
});
// This is expected to timeout
auto failedStatus = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(failedStatus, std::future_status::timeout);
// Push a task to unblock the queue
auto pushFuture = queue.push(TASK, VALUE);
// This is expected to succeed
auto successStatus = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(successStatus, std::future_status::ready);
// Verify the pushed future behaved correctly
auto pushStatus = pushFuture.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(pushStatus, std::future_status::ready);
ASSERT_EQ(pushFuture.get(), VALUE);
}
TaskQueue queue;
};
TEST_F(TaskQueueTest, pushStdFunctionAndVerifyPopReturnsIt) {
std::function<void()> function([]() {});
auto future = queue.push(function);
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
}
TEST_F(TaskQueueTest, pushStdBindAndVerifyPopReturnsIt) {
auto future = queue.push(std::bind(exampleFunctionParams, 0));
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
}
TEST_F(TaskQueueTest, pushLambdaAndVerifyPopReturnsIt) {
auto future = queue.push([]() { });
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
}
TEST_F(TaskQueueTest, pushFunctionPointerAndVerifyPopReturnsIt) {
auto future = queue.push(&exampleFunction);
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
}
TEST_F(TaskQueueTest, pushFunctorAndVerifyPopReturnsIt) {
ExampleFunctor exampleFunctor;
auto future = queue.push(exampleFunctor);
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
}
TEST_F(TaskQueueTest, pushFunctionWithPrimitiveReturnTypeNoArgsAndVerifyPopReturnsIt) {
int value = VALUE;
auto future = queue.push([=]() { return value; });
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
ASSERT_EQ(future.get(), value);
}
TEST_F(TaskQueueTest, pushFunctionWithObjectReturnTypeNoArgsAndVerifyPopReturnsIt) {
SimpleObject value(VALUE);
auto future = queue.push([=]() { return value; });
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
ASSERT_EQ(future.get().getValue(), value.getValue());
}
TEST_F(TaskQueueTest, pushFunctionWithNoReturnTypePrimitiveArgsAndVerifyPopReturnsIt) {
int value = VALUE;
auto future = queue.push([](int number) { }, value);
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
}
TEST_F(TaskQueueTest, pushFunctionWithNoReturnTypeObjectArgsAndVerifyPopReturnsIt) {
SimpleObject arg(0);
auto future = queue.push([](SimpleObject object) { }, arg);
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
}
TEST_F(TaskQueueTest, pushFunctionWithPrimitiveReturnTypeObjectArgsAndVerifyPopReturnsIt) {
int value = VALUE;
SimpleObject arg(0);
auto future = queue.push([=](SimpleObject object) { return value; }, arg);
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
ASSERT_EQ(future.get(), value);
}
TEST_F(TaskQueueTest, pushFunctionWithObjectReturnTypePrimitiveArgsAndVerifyPopReturnsIt) {
int arg = 0;
SimpleObject value(VALUE);
auto future = queue.push([=](int primitive) { return value; }, arg);
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
ASSERT_EQ(future.get().getValue(), value.getValue());
}
TEST_F(TaskQueueTest, pushFunctionWithPrimitiveReturnTypePrimitiveArgsAndVerifyPopReturnsIt) {
int arg = 0;
int value = VALUE;
auto future = queue.push([=](int number) { return value; }, arg);
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
ASSERT_EQ(future.get(), value);
}
TEST_F(TaskQueueTest, pushFunctionWithObjectReturnTypeObjectArgsAndVerifyPopReturnsIt) {
SimpleObject value(VALUE);
SimpleObject arg(0);
auto future = queue.push([=](SimpleObject object) { return value; }, arg);
auto task = queue.pop();
task->operator()();
auto future_status = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(future_status, std::future_status::ready);
ASSERT_EQ(future.get().getValue(), value.getValue());
}
TEST_F(TaskQueueTest, verifyFirstInFirstOutOrderIsMaintained) {
int argOne = 1;
int argTwo = 2;
int argThree = 3;
int argFour = 4;
auto futureOne = queue.push(TASK, argOne);
auto futureTwo = queue.push(TASK, argTwo);
auto futureThree = queue.push(TASK, argThree);
auto futureFour = queue.push(TASK, argFour);
auto taskOne = queue.pop();
auto taskTwo = queue.pop();
auto taskThree = queue.pop();
auto taskFour = queue.pop();
taskOne->operator()();
taskTwo->operator()();
taskThree->operator()();
taskFour->operator()();
auto futureStatusOne = futureOne.wait_for(SHORT_TIMEOUT_MS);
auto futureStatusTwo = futureTwo.wait_for(SHORT_TIMEOUT_MS);
auto futureStatusThree = futureThree.wait_for(SHORT_TIMEOUT_MS);
auto futureStatusFour = futureFour.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(futureStatusOne, std::future_status::ready);
ASSERT_EQ(futureStatusTwo, std::future_status::ready);
ASSERT_EQ(futureStatusThree, std::future_status::ready);
ASSERT_EQ(futureStatusFour, std::future_status::ready);
ASSERT_EQ(futureOne.get(), argOne);
ASSERT_EQ(futureTwo.get(), argTwo);
ASSERT_EQ(futureThree.get(), argThree);
ASSERT_EQ(futureFour.get(), argFour);
}
TEST_F(TaskQueueTest, popBlocksOnInitiallyEmptyQueue) {
testQueueBlocksWhenEmpty();
}
TEST_F(TaskQueueTest, popBlocksOnEmptyQueueAfterAllTasksArePopped) {
// Put a task on the queue, and take it off to get back to empty
auto futureOne = queue.push(TASK, VALUE);
auto taskOne = queue.pop();
taskOne->operator()();
auto futureOneStatus = futureOne.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(futureOneStatus, std::future_status::ready);
ASSERT_EQ(futureOne.get(), VALUE);
testQueueBlocksWhenEmpty();
}
TEST_F(TaskQueueTest, isShutdownReturnsFalseWhenRunning) {
ASSERT_EQ(queue.isShutdown(), false);
}
TEST_F(TaskQueueTest, isShutdownReturnsTrueAfterShutdown) {
queue.shutdown();
ASSERT_EQ(queue.isShutdown(), true);
}
TEST_F(TaskQueueTest, shutdownUnblocksAnEmptyQueue) {
// Have another thread blocked on the queue
auto future = std::async(std::launch::async, [=]() {
auto t = queue.pop();
if (t) t->operator()();
});
// This is expected to timeout
auto failedStatus = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(failedStatus, std::future_status::timeout);
// Shutdown to unblock the queue
queue.shutdown();
// This is expected to succeed
auto successStatus = future.wait_for(SHORT_TIMEOUT_MS);
ASSERT_EQ(successStatus, std::future_status::ready);
}
TEST_F(TaskQueueTest, pushFailsToEnqueueANewTaskOnAShutdownQueue) {
// No tasks should be enqueued
queue.shutdown();
auto future = queue.push(TASK, VALUE);
ASSERT_EQ(future.valid(), false);
auto retrievedTask = queue.pop();
ASSERT_EQ(retrievedTask, nullptr);
}
} // namespace test
} // namespace threading
} // namespace avsCommon
} // namespace utils
} // namespace alexaClientSDK